Browse > Article
http://dx.doi.org/10.11568/kjm.2011.19.2.191

LARGE AMPLITUDE THEORY OF A SHOCK-ACCELERATED INSTABILITY IN COMPRESSIBLE FLUIDS  

Sohn, Sung-Ik (Department of Mathematics Gangneung-Wonju National University)
Publication Information
Korean Journal of Mathematics / v.19, no.2, 2011 , pp. 191-203 More about this Journal
Abstract
The interface between fluids of different densities is unstable under acceleration by a shock wave. A previous small amplitude linear theory for the compressible Euler equation failed to provide a quantitatively correct prediction for the growth rate of the unstable interface. In this paper, to include dominant nonlinear effects in a large amplitude regime, we present high-order perturbation equations of the Euler equation, and boundary conditions for the contact interface and shock waves.
Keywords
interfacial instability; Richtmyer-Meshkov instability; perturbation theory; shock wave;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. D. Richtmyer, Taylor instability in shock acceleration of compressible fluids, Comm. Pure Appl. Math. 13 (1960), 297-319.   DOI
2 D. Sharp, An overview of Rayleigh-Taylor instability, Physica D 12 (1984), 3-10.   DOI   ScienceOn
3 Y. Yang, Q. Zhang and D. H. Sharp, Small amplitude theory of Richtmyer-Meshkov instability, Phys. Fluids A 6 (1994), 1856-1873.   DOI   ScienceOn
4 Q. Zhang and S.-I. Sohn, Nonlinear theory of unstable fluid mixing driven by shock waves, Phys. Fluids 9 (1997), 1106-1124.   DOI   ScienceOn
5 Q. Zhang and S.-I. Sohn, Quantitative theory of Richtmyer-Meshkov instability in three dimensions, Zeit. angew. Math. Phys. 50 (1999), 1-46.   DOI
6 S.-I. Sohn, Computation and analysis of mathematical model for moving free boundary flows, J. Korean Math. Soc. 37 (2000), 779-791.
7 B. Cheng, J. Glimm and D. H. Sharp, Dynamic evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts, Phys. Rev. E 66 (2002), 036312: 1-7.
8 S.-I. Sohn, Density dependence of a Zufiria-type model for Rayleigh-Taylor and Richtmyer-Meshkov bubble fronts, Phys. Rev. E 70 (2004), 045301: 1-4.
9 S.-I. Sohn, Analytic solutions of unstable interfaces for all density ratios in axisymmetric flows, J. Comput. Appl. Math. 177 (2005), 367-374.   DOI   ScienceOn
10 M. Vandenboomgaerde, S. Gauthier and C. Mugler, Nonlinear regime of a multimode Richtmyer.Meshkov instability: A simplified perturbation theory, Phys. Fluids 14 (2002), 1111-1122.   DOI   ScienceOn
11 M. Vandenboomgaerde, C. Cherfils, D. Galmiche, S. Gauthier and P. A. Raviart, Efficient perturbation methods for Richtmyer-Meshkov and Rayleigh-Taylor instabilities: Weakly nonlinear stage and beyond, Laser Part. Beams 21 (2003), 321-325.
12 J. Grove, Applications of front tracking to the simulations of shock refractions and unstable mixing, Appl. Numer. Math. 14 (1994), 213-237.   DOI   ScienceOn
13 R. L. Holmes, J. W. Grove and D. H. Sharp, A numerical investigation of Richtmyer-Meshkov instability using front tracking, J. Fluid Mech. 301 (1995), 51-64.   DOI   ScienceOn
14 R. Courant and K. O. Friedrich, Supersonic flow and shock waves, Springer, New York, 1976.
15 S.-I. Sohn, Analycal and numerical study of mode interactions in shock-induced interfacial instability, Commun. Korean Math. Soc. 15 (2000), 155-172.
16 S.-I. Sohn, Vortex simulations of impulsively accelerated unstable interface, Math. Comput. Modelling 04 (2004), 627-636.