• Title/Summary/Keyword: periodic system

Search Result 1,369, Processing Time 0.026 seconds

ON PERIODIC SHADOWING OF INDUCED HYPERSPACE MAPS

  • Koo, Namjip;Lee, Hyunhee;Tsegmid, Nyamdavaa
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • In this paper we deal with the preservation of the periodic shadowing property of induced hyperspatial systems. More precisely, we show that an expansive system has the periodic shadowing property if and only if its induced hyperspatial system has the periodic shadowing property.

Software Development for the Construction of Periodic Maintenance System (정기보전체계 구축을 위한 소프트웨어개발)

  • 김재중;김원중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.35
    • /
    • pp.115-122
    • /
    • 1995
  • This paper is developed with software system for the construction of periodic maintenance. The system includes records of equipment, maintenance work, failure mode analysis and work standards of maintenability, inspection & repair to establish periodic maintenance system. And the software program is designed with user-oriented to analyze maintenance data and maintenance system of periodic interval times. Also machine operator can easily apply maintenance management system in production & manufacturing field. Visual Basic in the environment of Window system is used as computer program language for graphics and data base management in IBM PC.

  • PDF

Cost Analysis for Periodic Maintenance Policy with Minimal Repair (응급수리를 고려한 정기보전정책의 비용분석)

  • 김재중;김원중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.139-146
    • /
    • 1995
  • This study is concerned with cost analysis in periodic maintenance policy. Generally periodic maintenance policy in which item is repaired periodic interval times. And in the article minimal repair is considered. Minimal repair means that if a unit fails, unit is instantaneously restored to same hazard rate curve as before failure. In the paper periodic maintenance policy with minimal repair is as follows; Operating unit is periodically replaced in periodic maintenance time, if a failure occurs between minimal repair and periodic maintenance time, unit is replaced by a spate until the periodic time comes. Also unit undergoes minimal repair at failures in minimal-repair-for-failure interval. Then total expected cost per unit time is calculated according to maintenance period and scale parameter of failure distribution. Total cost factors ate included operating, fixed, minimal repair, periodic maintenance and replacement cost Numerical example is shown in which failure time of system has erlang distribution.

  • PDF

Cost Analysis Model for Periodic Maintenance Policy with Maintenance Cost Factor (보전비용요소를 고려한 정기보전정책의 비용분석모델)

  • 김재중;김원중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.287-295
    • /
    • 1995
  • This paper is concerned with cost analysis model in periodic maintenance policy. Generally periodic maintenance policy in which item is repaired periodic interval times. And in the article minimal repair is considered. Mimimal repair means that if a unit fails, unit is instantaneously restored to same hazard rate curve as before failure. In the paper periodic maintenance policy with minimal repair is as follows; Operating unit is periodically replaced in periodic maintenance time, if a failure occurs between minimal repair and periodic maintenance time, unit is replaced by a new item until tile periodic maintenance time comes. Also unit undergoes minimal repair at failures in minimal-repair-for-failure interval. Then total expected cost per unit time is calculated according to scale parameter of failure distribution. Maintenance cost factors are included operating, fixed, minimal repair, periodic maintenance and new item replacement cost. Numerical example is shown in which failure time of system has weibull distribution.

  • PDF

THE DYNAMIC OF TWO-SPECIES IMPULSIVE DELAY GILPIN-AYALA COMPETITION SYSTEM WITH PERIODIC COEFFICIENTS

  • Zhang, Shuwen;Tan, Dejun
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1381-1393
    • /
    • 2011
  • In this paper, we consider two-species periodic Gilpin-Ayala competition system with delay and impulsive effect. By using some analysis methods, sufficient conditions for the permanence of the system are derived. Further, we give the conditions of the existence and global asymptotic stable of positive periodic solution.

Preventive Policy With Minor Failure Under Age and Periodic Replacement (경미한 고장을 수반하는 시스템에 대한 노화 및 예방적 교체 정책)

  • Lee, Jinpyo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.78-89
    • /
    • 2022
  • The purpose of this study was to propose useful suggestion by analyzing preventive replacement policy under which there are minor and major failure. Here, major failure is defined as the failure of system which causes the system to stop working, however, the minor failure is defined as the situation in which the system is working but there exists inconvenience for the user to experience the degradation of performance. For this purpose, we formulated an expected cost rate as a function of periodic replacement time and the number of system update cycles. Then, using the probability and differentiation theory, we analyzed the cost rate function to find the optimal points for periodic replacement time and the number of system update cycles. Also, we present a numerical example to show how to apply our model to the real and practical situation in which even under the minor failure, the user of system is not willing to replace or repair the system immediately, instead he/she is willing to defer the repair or replacement until the periodic or preventive replacement time. Optimal preventive replacement timing using two variables, which are periodic replacement time and the number of system update cycles, is provided and the effects of those variables on the cost are analyzed.

PERIODIC SOLUTIONS OF A DISCRETE TIME NON-AUTONOMOUS RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH CONTROL

  • Zeng, Zhijun
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.465-474
    • /
    • 2007
  • With the help of the coincidence degree and the related continuation theorem, we explore the existence of at least two periodic solutions of a discrete time non-autonomous ratio-dependent predator-prey system with control. Some easily verifiable sufficient criteria are established for the existence of at least two positive periodic solutions.

LTI model realization problem of linear periodic discrete-time systems

  • Su, Laiping;Saito, Osami;Abe, Kenichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1139-1144
    • /
    • 1990
  • In this paper, we consider linear periodic discrete-time control systems under periodic compensation. Such a closed-loop system generally represents a periodic time-varying system. We examine the problem of finding a compensator such that the closed-loop system is realized as LTI model (if possible) with the closed-loop stability being satisfied. We present a necessary and sufficient condition for solving such problem and also give the characterization of realizable LTI models.

  • PDF

Periodic Replacement of a System Subject to Shocks under Random Operating Horizon (랜덤한 운용시평하에서 충격 시스템의 보전방안)

  • Yoo, Youngkwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.105-112
    • /
    • 2021
  • This paper presents a periodic replacement policy for a system subject to shocks when the system is operating for a finite random horizon. The system is subject to shocks during operation, and each shock causes downgrading of the system performance and makes it more expensive to run by the additional running cost. Shocks arrive according to a nonhomogeneous or a renewal process, and we develop periodic replacement policies under a finite random operating horizon. The optimum periodic replacement interval which minimizes the total operating cost during the horizon is found. Numerical examples are presented to demonstrate the results.