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Abstract

This paper presents a periodic replacement policy for a system subject to shocks when the system is 
operating for a finite random horizon. The system is subject to shocks during operation, and each shock 
causes downgrading of the system performance and makes it more expensive to run by the additional 
running cost. Shocks arrive according to a nonhomogeneous or a renewal process, and we develop periodic 
replacement policies under a finite random operating horizon. The optimum periodic replacement interval 
which minimizes the total operating cost during the horizon is found. Numerical examples are presented to 
demonstrate the results. 
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1. Introduction

When a system is put in service in industry or 
service facilities, it is common to become less 
effective as the operating time elapses. According to 
the random failure and deterioration of the system, 
the running cost of the system becomes large and 
it is often economical to replace the system with a 
new one in a periodic fashion. Also in a safety 
management point of view, performing timely 
maintenance activity is very important for the safety 
of employees. 

One traditional way that handles this problem is 
to model those situations as an increasing failure 
rate with increasing maintenance cost. The optimum 
replacement time is found to balance the system 
replacement cost and the maintenance cost[1-3]. 

Another way to model those random phenomenon 
is to consider the system degradation as a result of 
shock to the system[4-7]. Many systems that are 

put in service in industry are usually exposed to 
various shocks such as extreme weathers or 
fluctuated voltages which result in a significant 
damage to system lifetime[7]. Also the word shock 
may be interpreted in a broad senses such as a 
failure of a part in a complex system[4]. Shocks 
arrive according to a random process and each shock 
increases the running cost by some magnitude. The 
system is replaced periodically as the system 
operating cost becomes high[4, 5]. In Sheu et al.[7], 
the minimal repairs upon failure are regarded as a 
nonhomogeneous Poisson shock process to system, 
and a generalized maintenance policy which incorporate 
the minimal repair, overhaul, and replacement is 
presented. 

Boland and Proschan[4] proposed a periodic 
replacement policy for a system subject to shocks. 
Shocks arrive according to an nonhomogeneous 
Poisson process. The additional running cost caused 
by a shock is burdened to a normal running cost of 
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a new system. The system is replaced at times , 

, , ..., and the optimum   which minimizes 
the long run expected cost per unit of time is found. 

Abdel-Hameed[5] treated the same problem as 
that of Boland and Proschan[4] except the arriving 
shock process. In Abdel-Hameed[5], shocks arrive 
according to a counting process whose jump size is 
of one unit magnitude. The derived expected 
operating cost per unit of time has the similar form 
as that of Boland and Proschan[4], and the condition 
for the existence of optimum periodic replacement 
interval is found.

Most previous researches on maintenance policies 
including the shock models assume that the system 
will be operating for an infinite time horizon. 
However the assumption nowadays has become less 
reasonable due to the recent rapidly developing 
industry technologies[9]. Newly developed systems 
or parts are releasing with enhanced lifetime, failure 
rate, and maintenance costs. Therefore, instead of 
assuming an infinite time horizon with repeated use 
of systems of the same kind, it is appropriate to 
assume that the system will be operating for a finite 
time horizon, and a new horizon will begin for the 
newly updated system.

The studies on the maintenance policies under a 
finite time horizon are rarely found in literature. 
Wells and Bryant[10] presented an age replacement 
policy for a part with phase-type lifetime distribution 
when the time horizon is probabilistic. Nakagawa 
and Mizutani[9] have dealt with a replacement 
policy when the time horizon is fixed in constant. 
Yun and Chung[11] found the optimum periodic 
replacement time for a system with Weibull lifetime 
distribution which will be operating for a random 
horizon time under minimal repair policy. Khatab et 
al.[12] extended the result of Yun and Chung[11] 
for the general lifetime distribution. Khatab et 
al.[13] also developed a modified block replacement 
policy when the length of operating time horizon is 
random. Yoo[14, 15] extended the minimal repair 
and block replacement policy of Khatab et al.[12, 
13] to continue its operation beyond the end of 
horizon until the periodic replacement time comes. 
Yoo[16] also presented group replacement policies 

for a system operating for a random horizon. For a 
system subject to shocks, Boland and Proschan[4] 
found the total expected cost over a finite constant 
time horizon.

In this paper, periodic replacement policies for a 
system subject to shocks are presented when the 
system is operating for a random time horizon. Shocks 
arrive to the system according to some random 
process, and each shock increases the running cost 
of the system. After the maintenance policy of 
Boland and Proschan[4] and Abdel-Hameed[5], the 
system is replaced periodically  ,  ,  , ... until 
the end of operating horizon. We search for the 

optimum replacement interval   which minimizes 
the total operating cost of the system over the 
horizon. 

The contents of the paper are as follows. In 
section 2, a periodic replacement policy for a 
system subject to shocks which arrive according to 
a nonhomogeneous Poisson process is presented. 
Section 3 revisits the same problem as section 2 
when shocks arrive according to a general renewal 
process. Numerical examples are presented to 
demonstrate the results in section 4, followed by 
conclusions in section 5. 

2. Nonhomogeneous Poisson Shock Model 

This section performs a cost analysis on a system 
subject to repeated shocks operating for a finite 
random horizon. The normal running cost of a new 
system is  per unit of time. Shocks arrive to the 
system according to a nonhomogeneous Poisson 
process. Each shock to the system increases the 
running cost by   per unit of time. The system is 

replaced periodically at times , , , ..., and the 
cost of replacing the system by a new one is  , 

where    . The system will be put in service 

until the end of horizon, where the length of the 
horizon follows a probability distribution function. 
[Figure 1] depicts the  periodic replacements and 
the end of horizon at .
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[Figure 1] Shocks arrive(v) randomly and system is 

replaced at intervals of  until the end of horizon() 

The normal running cost of the new system 
during  is simply  . The expected additional 
running cost during  when it is subject to 
nonhomogeneous Poisson shocks of intensity rate 

 is[4] 




, where  




. 

Therefore the expected cost during  for 
system operation and replacement is

            




  (1)

Suppose that the operating horizon ends at  
(refer to [Figure 1]). Then the total running cost 
during  when there are  replacements is





  





 




   

                


  



     




  


  

 (2)

Let  be the distribution function of the 
horizon. Then the total expected running cost of the 
system subject to shocks with a finite random 
horizon and periodic replacement interval  is

  
  

∞




  

    






                 


  



           (3)
where

   
  

∞




  

    (4a)

  





  

∞




  

 (4b)

   
  

∞




  




  

. (4c)

Suppose that the length of horizon follows an 

exponential distribution,       . Then, 
after the method of Khatab et al.[11], 

   
  

∞




  

    

       
  

∞




  

 

                   
  

∞




  

 

       




   


 

(5a)

  





  

∞




  

 

     
   


 






 (5b)

and by putting      and applying partial 
integration,

   
  

∞




  






  





 

    
  

∞

















    

  
   

 















 

  
   

 




     . (5c)

By summing up (5a), (5b), and (5c), the total 
expected running cost under exponential time 
horizon is

  




   


   





 

(6)

Differentiating  in (6) with respect to  
and equating it to zero, we get the necessary 
condition for  being optimal

          

        





   




 



  (7)

or after some algebra,

      ≡




      

 (8)

Substituting (7) for (6), the total cost when the 

system is periodically replaced by the interval   , 
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which satisfies (8) becomes

          

  
  (9)

In (8), it is easily seen that 
               

                  
which implies that  is a strictly increasing 

function in . Thus if 

      lim
→∞






     

 (10)

there exists a finite optimal periodic replacement 

interval   which minimizes .

Case 1: Constant intensity rate
When the shocks arrive at a constant intensity 

rate   , that is, when the shocks arrive 
according to a homogeneous Poisson process, 
   and the total cost (6) reduces to

  





 





 


 (12)

Since the condition (10) satisfies as

lim
→∞






     lim
→∞




  


   






             ∞  


                      

there exists a finite optimal periodic replacement 

interval   which satisfies (8) with the total cost 
during the horizon

        


    (13)

Case 2: Exponentially increasing intensity rate
Suppose that shocks arrive at an exponentially 

increasing intensity rate,      . Then 

       




  


  

and the total cost during the horizon (6) is

 
   

  


   


   






                   


 


 (14)

Also the condition (8) implies that

    




  
      


  


      

                              


(15)

and it is evident to see that ∞  ∞   .

Therefore when shocks arrive at an exponentially 
increasing intensity rate, there exists a finite 

optimal periodic replacement interval   which 
satisfies (15) with the total cost during the horizon

      

 


 


 

 



  (16)

Case 3: Exponentially decreasing intensity rate
When the shocks occur at an exponentially 

decreasing intensity rate,        , then 

       and the total cost during the 
horizon (6) becomes

 
   

  


   


    






                   


 


 (17)

After some algebra, (8) reduces to

   

   

  

      

 



Thus if

          ∞  


  


 


, 

or if      , there exists a finite optimal 

replacement interval   with the total cost during 
the horizon

     

 


 


  

  





  (18)

If    ≥  , then  →∞ , that is, the 
optimal policy is not to replace the system until the 
end of horizon.

3. Renewal Process Shock Model 

In this section, the problem presented in section 
2 is revisited when the shocks arrive according 
to a renewal process. Let     be the 
distribution function of the inter-arrival time of 
renewal shock process. Abdel-Hameed[5] has 
shown that the expected total cost of running the 
system per period is given by
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            




  (19)

where , which is called as renewal function,  
is the expected number of shocks in [0,t), 

  
  

∞

, and  is the n-fold convolution 

of  with itself[16]. The renewal function is also 

defined as  




, where  is the 

renewal density of the renewal shock process[16].
As in section 2, suppose that the length of horizon 

follows an exponential distribution,       . 
Since the expected total cost of running the system 
per period (19) is the same form as that of the 
nonhomogeneous Poisson shock model (1), the 
expected total cost during the horizon can be 
obtained similarly as 

   




   


   





 

(20)

Following the method of section 1, the necessary 
condition for  being optimal is

   ≡




      

 (21)

and the total cost when the system is periodically 

replaced by the interval   , which satisfies (21) is

          

  
  (22)

It is easily seen that from (21),

                



               

which implies that   is strictly increasing in 

  . Thus if

        lim
→∞






     

     

there exists a finite optimal periodic replacement 

interval   which minimizes  .
Suppose that the inter-arrival time of shocks 

follows an Erlang distribution of order two,

    , 
where    and  is the rate parameter. 
The renewal density and the renewal function are 
known respectively as[17]

             


     (23a)

        

 


  


    




 (23b)

After tedious algebra, we get






    
      

          


  
    

 

(24)

and substituting (24) for (20), the expected total 
cost during the horizon is expressed as

   






  


  



        ×



 


  

    



 (25)

Substituting (23a) for (21), we get

   


   

      



   

                 

   

  


(26)

From (26), it is obvious that 

           lim
→∞

   ∞  



and there exists a finite optimal   which minimizes 
 .

4. Numerical Examples

In this section, some numerical examples which 
illustrate the results of section 3 are presented. 
Suppose that the length of the operating horizon of 
a system is randomly determined by an exponential 
distribution with parameter   , which means 
that the horizon time is expected to last    
years. Shocks arrive to the system according to 
some random process, and the additional operating 
cost    per unit of time is burdened each time 

a shock comes. The normal running cost is    per 
unit of time. The replacement of the system by a 
new one costs   .
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4.1 Constant Intensity Rate

Suppose that shocks arrive according to homogeneous 
Poisson process with an intensity rate of   . The 
total cost function (12) is evaluated for the above 
parameters using the open mathematical software 
GNU Octave. The optimal replacement period is 

obtained as     year with the expected total 

cost    . [Figure 2] illustrates the 
behaviour of the cost function  and the existence 
of the finite optimum replacement interval. <Table 

1> displays the optimal replacement intervals   and 

the corresponding total costs   for various 
intensity rates of . The table shows that as the 
intensity rate increases, that is, as the shock occurs 
frequently, the optimal replacement interval becomes 
shorter, whereas the total cost becomes larger. 

[Figure 2] The shape of  for homogeneous 
Poisson shocks with intensity rate    

 1 2 3 4 5 6

  2.82 1.94 1.57 1.35 1.20 1.09

 37.37 53.32 65.59 75.94 85.07 93.32

<Table 1> The optimal replacement intervals with the total
cost for constant intensity rate

4.2 Exponentially Increasing Intensity rate

Suppose that shocks comes to the system 
according to a nonhomogeneous Poisson process 

with an increasing intensity rate    . Again, 
the cost function (14) is computed to obtain the 

optimal periodic replacement intervals with the 
expected total costs for several valus of , which 
is summarized in <Table 2>. Like <Table 1>, the 
optimum replacement interval gets shorter whereas 
the total cost becomes larger as the value of  
increases.

 1 2 3 4 5 6

  1.57 1.16 0.95 0.81 0.71 0.63

 52.06 64.25 75.23 85.45 95.12 104.37

<Table 2> The optimal replacement intervals with the total 

cost for increasing intensity rate   

4.3 Exponentially Decreasing Intensity Rate

When shocks arrive according to a nonhomogeneous 
Poisson process with a decreasing intensity rate 

    , the existence of a finite optimal 
replacement interval depends on the value of 
  . If      , i.e., if     , 

there exists a finite optimum   . Otherwise, the 
optimum policy is not to replace the system at all 

until the end of horizon, i.e.,  →∞ . 
Suppose    so that     . [Figure 

3] verifies that the cost function (17) is strictly 
decreasing in   , and the optimal policy is not to 

replace the system, i.e.,  →∞ . On the other 
hands, when   , we have     ; 

the optimum replacement interval is     year 

with the expected total cost    

[Figure 3] Shape of strictly decreasing total cost for
nonhomogeneous Poisson shocks with decreasing 

intensity rate   
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4.4 Renewal Shock Process

To illustrate the last example, suppose that the 
inter-arrival time of shocks follows an Erlang 

distribution     , where  is a rate 
parameter. Again using the software GNU Octave, 
the optimal replacement intervals and the 
corresponding total costs are computed for several 
values of rate parameter  . The results are 
summarized in <Table 3>. The pattern of the change 
is similar to the previous results; as the value of rate 
parameter increases, the optimum replacement 
interval gets shorter whereas the total cost becomes 
large.

 1 2 3 4 5 6

  4.24 2.85 2.28 1.95 1.73 1.57

 23.02 34.03 42.60 49.85 56.26 62.07

<Table 3> The optimal replacement intervals with the total
cost for renewal shock process

5. Conclusion

This paper suggested a periodic replacement 
policy for a system subject to shocks which will be 
operating for a finite random horizon. Shocks arrive 
to a system according to a random process, and each 
shock causes some additional running cost. The 
system is replaced periodically to balance the 
increasing running cost and the replacement cost.

For each homogeneous and nonhomogeneous 
Poisson shock process with increasing and 
decreasing intensity rate, the expected total cost 
during the operating horizon was obtained assuming 
exponential horizon time distribution. An analysis 
for renewal shock process was also performed when 
the inter-arrival time of shocks follows an Erlang 
distribution. Numerical demonstrations to obtain the 
optimum replacement intervals were presented for 
Poisson and renewal shock processes.

Most previous researches on the maintenance 
policies assume that the system will be operating 
infinitely, replacing old ones with new ones. 

However, in modern times with rapidly changing 
industrial technologies, it is more reasonable to 
assume that the horizon time is finite as presented 
in this paper. In this study, the length of horizon was 
assumed to follow a specific exponential distribution. 
Further research is needed to overcome this 
limitations. 
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