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EXISTENCE OF PERIODIC SOLUTIONS OF A HIGHER
ORDER DIFFERENCE SYSTEM

RonGHUI HU AND LiHONG HUANG

ABSTRACT. By using critical point theorem, we study a higher order dif-
ference system, and obtain some new sufficient conditions ensuring the
existence of periodic solutions for such a system.

1. Introduction

In the last decade, there has been much progress on the qualitative properties
of difference equations, which included results on stability and attractivity
[6, 12, 17, 19], oscillation and other topics [1, 11, 15]. However, results on
periodic solutions of difference equations are very scare in the literature, see
[2, 5, 20]. On the other hand, there have been many approaches to study
periodic solutions of differential equations, such as critical point theory (which
includes the minimax theory, the Kaplan-Yorke method and Morse theory),
fixed point theory, coincidence theory, and so on, see for example [7, 9, 10,
13, 14]. Among these approaches, critical point theory is an important tool
to deal with such problems. The main idea of these papers is constructing
suitable variational structure, such that the critical points of the functional
correspond to the periodic solutions of the differential equations. It is natural
for us to think that critical point theory may be applied to prove the existence
of periodic solutions of difference equations. However, there are, at present,
only a few papers dealing with this problem, see, for example, [7, 8, 21, 22].
Nevertheless these papers consider only the second order difference equations
except [22] which discuss the subquadratic discrete Hamiltonian system.
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In this paper, we first consider the following nonlinear higher order difference
system

k
(1.1) > ai(Xnoi + Xnts) + f(n,X,) =0, n € Z, ke N,
=0

where N and Z are the sets of all positive integers and integers respectively,
meN,f = (fi,fa,.. -, fm)T € CR x R™,R™), R is the set of all real
numbers, and there exists a positive integer M such that for any (¢,2) €
RxR™ f(t+M,2) = f(t,Z).

Lately, we study the nonlinear higher order difference equation

k
(1.2) > Az, + f(n,2,) =0, n€Z, kEN,

=1

where A is the forward difference operator defined by Az, = z,+1 — Zn, and
A* = A(A*™1) for s =2,3,...; f € C(R x R,R), and there exists a positive
integer M such that for any (¢,z) € Rx R, f(t+ M, z) = f(¢,2). (1.2) can be
seen a special form of system (1.1) with m = 1.

Let p be a positive integer, as usual, a solution {X,} of (1.1) is said to be
periodic of period p if Xp4; = X;,¢ € Z.

The main purpose of this paper is to study the existence of periodic solutions
of a higher order difference system (1.1) and equation (1.2), our results improve
the corresponding ones in [7].

Throughout this paper, for a, b € Z, we define Z(a) : ={a,a+1,...}, Z(a,b) :
={a,a+1,...,b} when a < b. On the other hand, we suppose that there exists
a continuously differentiable function F(¢t,Z) € C'(R x R™,R), such that
V.F(t,Z2) = f(t,Z) for any (t,Z) € R x R™, where V,F(t,Z) denotes the
gradient of F'(t,Z) in Z. Moreover, for all n € N, |-| will denote the Euclidean
norm in R™ defined by

n
1X|=0" X} forall X =(X1,Xa,...,Xn) € R™
=1
For the existence of M-periodic solutions of system (1.1), we obtain the
following results.

k
Theorem 1.1. Suppose that M > 2k + 1, ap + Y |as| < 0, there ewists

s=1
k
1€ Z(0,M — 1) such that Z:o cos 22§ =0, and F(t,Z) satisfies
(f1) there exists a positive integer M, such that F(t + M,Z) = F(t,2),

V(t,Z) e RxR™, and F(t,Z) > 0;
(f2) F(t,2) = o(|2?), if Z = 0;
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k
(fs) there are constants p > 0,7 > 0,8 € (—ag + Y. |as|, +00), such that
=1

F(’I’L,Z)ZB'ZF—’Y? ”€Na|Z|ZP

Then system (1.1) possesses at least three M -periodic solutions.

Theorem 1.2. Suppose that M > 2k+1, ag+ Z las| < 0, and F(t, Z) satisfies
(f1) to (fs). Then system (1.1) possesses at least one M -periodic nontrivial
solution.
k
Theorem 1.3. Suppose M > 2k + 1, ag + Y. las| < 0, and F(t,Z) satisfies
s=1
(f1) and

k
(fa) there are constants 6 > 0 and ay € (0,—ao — Y. |as|), such that
s=1

F(n,Z)<a1|Z)?, neN,ZeR™|Z|<6;
(fs) there are constants Ry > 0, > 2, such that
Zfn,Z) > awF(n,Z) >0, |Z|> Ry;
(fé) F(t,Z2)=-F(t,~Z), VYVt Z)eRxR™.
Then system (1.1) possesses infinite M -periodic solutions.

Theorem 1.4. Suppose that M > 2k + 1, there exist i, € Z(0,M — 1) such
k
that Y ascos 22 < 0 < Z ascos 223, and F(t, Z) satisfies (f1), (f2), (f3)-

5=0 5=0
Then system (1.1) possesses at least one M -periodic nontrivial solution.

For the existence of M-periodic solutions of equation (1.2), we have

Theorem 1.5. Suppose that M > 2k + 1, rosr1 > 4rair0 when M is even, or
aer1 > 2(1+ cos I )rarye when M is odd, t = 0,1,....[5] -1 and r, > 0, and
that f(t,z) satisfies

(g1) f(t,2) € C(R x R,R), there exists a positive integer M such that
7l M0 =102, Ve € R xR
2) [y f(t,s)ds > 0,Vz € R, and if 2 = 0, f(t,2) = o(z);

(93) There are constants R > 0, 8 > 2 such that

2f(t2) > /Ozf(t,s)ds>0, V|z|> R

Then equation (1.2) possesses at least three M -periodic solutions.

Remark 1.1. The result of [7] is the special case of Theorem 1.5 with k =
]., r = 1.
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2. Variational structure

To apply critical point theory to study the existence of periodic solutions of
system (1.1) and equation (1.2), we shall construct suitable variational struc-
ture. At first, we shall state some basic notations and lemmas which will be
used in the proofs of our main results.

Let S be the set of sequences

= (...,X_n,X_n+1,...,X_l,Xo,Xl,XQ,...,Xn,...) = {X n——oo7

where X, = (Xpn1,Xn2,..., Xnm)T€ R™, m is a given positive integer.
For any X,Y € S,a,b € R, aX + bY is defined by

aX +bY := {aX, + bY, }1>

—001

then S is a vector space.
For any given positive integer M, Ey is defined as a subspace of S by

By = {X = {X,} € S|Xpsns = Xn,n € Z}.

E) can be equipped with inner product (-,-)z and norm ||-||g,, as follows:
(2.1) (X,Y)m ZX Y, VX ={X,} € Euy,Y ={V,} € Ey,
and
M 1
(2.2) IXNlEw = () X?)%, VX € Ey,

where | - | denotes the Euclidean norm in R™, and X,, - Y, denotes the usual
scalar product in R™.
Define a linear map L : Ep; — R™M by

(2.3) LX = (X1, Xar,t, X120+, Xg,2s Xt o ooy Xtm) T

where X = {X,.}, Xi = (X;1,Xi2,...,Xim)T,i € Z(1, M). It is easy to see
that the map L defined in (2.3) is a hnear homeomorphism with || X||g,, =
|LX|, (Em, (-,-))E,, is a finite dimensional Hilbert space, which can be identi-
fied with R™M.

For system (1.1), we consider the functional I defined on Ej; by

(2.4) I(X ——}:Za, i+ Xnpi) - X ZFan),
n=1 =0
where X,y = X,,, n € Z,VX € Ey,.
Since Ej is linearly homeomorphic to R™M | by the continuity of f(¢, Z),
I can be viewed as continuously differentiable functional defined on a finite
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dimensional Hilbert space. That is I € C*(Ey;, R). Furthermore, I'(X) = 0 if
and only if

AI(X)
89X,

=0, leZ(1l,m), ne Z(1,M).
If we define Xy := Xy, then

oI(X k
a)((nz) = — [; Gi(Xn—i,l + Xori) Xng + fi (n, X,)],

L€ Z(1,m), n € Z(1, M).

Therefore, X € Ejy is a critical point of I, that is, I'(X) = 0 if and only if

k

D ai(Xnig + Xntig) + filn, X,) =0,
=0

VIieZ(1,m), n € Z(1,M).

That is,

k
D ai(Xoi+ Xngi) + f(n,Xa) = 0, n € Z(1, M).

=0

On the other hand, {X,} is M-periodic in n, and f(t, Z) is M-periodic in
t, hence, X € Ej; is a critical point of I if and only if

k

Y ai(Xnmi+ Xnyi) + f(n, Xp) = 0
=0

for any n € Z. Thus, we reduce the problem of finding M -periodic solutions of
(1.1) to that of seeking critical points of the functional I in Exs.
Due to the identification of Ep; with R™M | [(X) is rewritten as

M
1
(2.5) I(X) = 5(LX)TA(LX) — Y F(n,X),
n=1
where X = X,€eEy, X; = (Xz"l,Xi’27 . ,Xi’m)T,’L' S Z(LM)
B 0

0 B mMxmM
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200 ay @y - ar_1 ok 0] 0 --- 0 ar  Qp—1 -+ G2 G
ar 2a a1 -+ a2 ak—1 ap 0 .- 0 0 ar -+ a3 a
az ar 200 -+ Gk—3 Gkr—2 Gk-1 Qg - 0 0 0 - a4 as
~-B=
az asz ag 0 0 0 0 Qg Qp-1 Q-2 ' 2(10 a
ay Ay az -+ Gk 0 0 0 -+ ar—1 Gk—2 Qar-3 '+ a1 Z2ag MxM
Assume that the eigenvalues of B are Ao, A1, ..., Aar—1 respectively, and B
is a circulant matrix [3] denoted by
def .
B = Circ{-2a9,—a1,—as,...,—ax,0,...,0,—ap, —ak_1,...,—as, —a1 }.

By [3], the eigenvalues of B are

k , k .
Aj = —2a9— Z as{expi3r}s — 30 as{expiZr}M-s
(2.6) s=1
= —2Zascos(2JM—), j=01,...,M—1.

s=0

Apparently, the matrix A has the same eigenvalues as B. By (2.6), it is clear
that

k k
(27) —2a0—-2) Ja,| <A < —200+2 las|, (j=0,1,2,...,M - 1).

s=1 s=1
Let
Amax = max{A;|A; #0,7 =0,1,..., M — 1},
Amin = min{A;{A\; #0,5 =0,1,..., M —1}.
Thus we have the following cases:

k
Case 1. ap + ) las| < 0, and there exists i € N(0,M — 1) such that
s=1

E
> ascos 224 = 0. It follows that A; > 0(j = 0,1,2,..., M — 1), and hence
=0
the matrix A is sem1 positive definite.

Case 2. ag + Z las| < 0. This implies that X; > 0(j =0,1,2,..., M — 1),

and hence the matrlx A is positive definite.
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k
Case 3. There exist i,j € N(0, M — 1) such that Y. a,cos 24 < 0 <
5=0

3 a, cos 2T 57 J- For this case, the matrix A may have positive eigenvalue, neg-
s=0
ative eigenvalue, or zero eigenvalue.

For equation (1.2}, according to the previous discussion, we can also con-
struct a suitable variable structure and the functional J defined on Ej; with
m=1,

1 M k M
— A2t .
(2.8) J@)=-3 n_l(; riAY g — ;F(n,.wn), Va € By,

where F(t,2) = [ f(t,s)ds.
In view of TntM = Zn, VT € Ep, n € Z, (2.8) can be rewritten as

k ‘ M
J(z) = % E (> r,AQ’xn_i)xn -2 F(n,z,)
n=1 =1 n=1
1 M k 2 M
= =5 ri(— )36'211'n+Z iZn — 3. F(n,z,)
n=11i=1 j=0 n=1
1 M k M
= 32 Z dsTpistn — Y, Fn,z,),
n=1 s—=— n=1

where
k
do = Z(—l)i“ri@i,
=1

k
= Z(—l)"—”lncgf,

andd_; =ds,s=1,2,...,k.
If we define zo := x4, then

!

k
66Jg§: = [ Y diznys+ f(n,zn)]

s=—k

1

k .
-2 rid¥ ez, + f(n,zn)l,
=1
where n € Z(1, M). Therefore, z € Ej is a critical point of J, that is, J (z) = 0
if and only if

k
ZriA%xn_i + f(n,z,) =0, n€Z(1,M).
=1
On the other hand, {z,} € Es is M-periodic in n, and f(¢, z) is M-periodic
k .
in t, hence, # € Ej is a critical point of J if and only if Y r;A%z,_; +
i=1
fln,z,) = 0 for any n € Z, and z = {z,} is a M-periodic solution of (1.2).



412 RONGHUI HU AND LIHONG HUANG

Thus we reduce the problem of finding M-periodic solutions of (1.2) to that of
seeking critical points of the functional J in Ej;.
For convenience, we write € Ey as x = (21, 22, - - L)
When M > 2k + 1, J(z) is rewritten as

J(z) = —:cTDx— ZF N, Tn),

where z = (z1,2s,...,21)7.
Let the eigenvalues of D be /\6, /\11, ce )\'M_l, and D be a circulant matrix

[3] denoted by

D déf CiI‘C{d(),dl,dg, s adk707 s ,Oadkydk—lv .. '7d25d1}'
By [3], the eigenvalues of D are

, k ‘ k .
X, = do+ 2_)1 do{expidT} + ;ds{expi%\%”}M_s
k .
(2.9) = do+2% d, cos(ZeT)
) =
= 821( 1)+ [2(1 - cos 21{,1”)] )
where 5 =0,1,...,M — 1.

Let

Amax = max{A;|A; #0,j =0,1,..., M -1},

Amin = min{X;|X; #0,5 =0,1,...,M - 1}.
According to (2.9), for any positive integer M with M > 2k + 1, we have
Case 4. If Toty1 > 47‘2t+2 when M is even, or Tot+1 > 2(1 + cos %)r2t+2

when M is odd, ¢ = 0,1,...,[%] — 1, and 7, > 0, then the matrix D is semi-
positive definite.

3. Main lemmas

In this section, we give several lemmas which will play important roles in
the proofs of our main results.

Lemma 3.1 ([16]). For any given uj,v; > 0(j = 1,2,...,k), ¢ > 1, s > 1,
and % + % =1, the following inequality hold:

k k k

1 1

D ui; < O u) O v
j=1 =1 J=1

According to Lemma 3.1, for any s > 1, we can give another norm as follows:

1

1X|ls = 21X| °,  VXe€Ey,

©



PERIODIC SOLUTIONS OF A HIGHER ORDER DIFFERENCE SYSTEM 413

apparently, || X[|s = || X||g,,.
Because Ey is equivalent to the finite dimensional Hilbert space R™M,

(Em, |IX1l2) and (Ea, || X||s) is equivalent, that is, there exist constants cs >
c1 > 0 such that

(3.1) allXlls 11Xz < el X]ls, VX € Ey.

Definition 3.1 (Palais-Smale condition [14]). Let X be a real Banach space,
I € CY(X,R), that is, I is a continuously Fréchet differentiable functional
defined on X. [ is said to satisfy the Palais-Smale condition if any sequence
{un} C X for which {I(u,)} is bounded and I' (u,) — 0(n = co) possesses a
convergent subsequence in X.

Let B, denote the open ball in X about 0 of radius r and 9B, denote its
boundary.

Lemma 3.2 (Linking Theorem [14]). Let X be a real Banach space, X = X; &
Xy, where X1 15 a finite dimensional subspace of X. Assume that I € C*(X, R)
satisfies the P.S. condition, and

(I1) there exist constants o > 0 and p > 0 such that IsB,nx, > 0;

(I3) there is an 6 € OB N Xy and a constant Ry > p such that I|pg < 0,
and

QY (Br, N X)) @ {r0]0 < r < Ry}

Then I possesses a critical value ¢ > o, where

= inf max ]
¢ = jnf max I(h(u)),

and T'= {h € C(Q,z) : hlag = id}.
Lemma 3.3 (Ambrosetti-Rabinowitz Mountain Theorem [18]). Let I € (X,

RY) satisfy the P.S. condition, even, and

(S1) there exist constants ¢ > 0, p > 0, and there exists a finite subspace E
such that

IlgnB, > o
(S2) there exist a series subspace E;, dim(E;) = j and R; > 0 such that
I(z) <0,Yz € E;/Bpg,, j =1,2,....
Then I possesses infinite critical points corresponding to positive critical values.

Lemma 3.4 (Linking Theorem [18]). Let X be a real Banach space, 8 > a,
and I € C1(X,R) satisfy
a) sup I(z) < a
z€0Q
b) Helg I(z) > B, and I [a, +00) satisfies the P.S. condition;

¢) sup I(z) < +o0.
z€Q
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Then I possesses a critical value ¢ > 8, where

= inf max ]
¢= inf max (h(w)),

and T = {h € C(Q,z) : hlag = id}.

Consider the following functional

M
I(X) = %(LX)TA(LX) — Y F(n, X,).

n=1

We have the following lemmas.

Lemma 3.5. Suppose that F(t,Z) satisfies (f1) and (f3). Then the functional
I(X) is bounded from above in Ej;.

Proof. According to (f3), if we let
n =max{|F(n,2) ~ BIZ]" +7|:n € Z,1Z| < p},v =7+ .

Then
(3.2) F(n,2) > B|Z]> -y ,n€Z,Z € R™.
For any X € Ejy, by (3.2),
M
I(X) = ;(LX)TA(LX) - ¥ F(n,X,)
n=1

M
< PAmax|LX |2 - Z_:IF(n,Xn)

M ’
< %)\max”X”2 - Z_:l(ﬂlXP -7 )
= (%/\max _‘IB)HX”2EM +M’}”.

Since by (f3), we see that 8 > %/\max, thus I(X) < M~'. The proof of
Lemma 3.5 is complete. O

Lemma 3.6. Suppose that F(t,Z) satisfies (f1) and (f3). Then the functional
I(X) satisfies the P.S. condition.

Proof. Let {I(X(®))} be a bounded sequence from below, that is, there exists
a positive constant ¢ such that

—c < I(X™), Vk e N.
By the proof of Lemma 3.5, it is easy to see that
1 /
—¢ SI(XW) < (GAmax = AIXPIE,, + M7,
which implies
1 _ ,
||X(k)||2EM <(B- §AmaX) I(M'Y +c)'
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That is, {X®} is a bounded sequence in the finite dimensional space Eyy.
Consequently, it has a convergent subsequence. Thus, we obtain Lemma 3.6.
a

Lemma 3.7. Assume F(t,Z) satisfies (f1) and (f5). Then the functional I(X)
is bounded from above in Ej,.

Proof. By (fs), we have

(f5) there exist some constants £, > 0 and B2 > 0,
such that

(3.4) F,2)> 51| Z|* -B,¥Z € R™.
Therefore, for any X € Eyy,

I(X) = LLXTALX) =3 Fin,X.)
n=1

M
S %')\max'L)(l2 - ﬁl Z |<Xvn|o{2 + /32M

= el XIE — Bul[X ] + BoM.

According to (3.1), there exists a positive constant ;};, such that || X, >
X2, thus,

1 1 @
HX) < FAmaxl| X5 - B)ZIXIE" + 5o M.
For az > 2, there exists a positive constant M; > 0 such that
I(X) < M,VX € Ey.
O

Lemma 3.8. Assume F(t, Z) satisfies (f1) and (f5). Then the functional I{X)
satisfies the P.S. condition.

Proof. Let {I(X®)} be a bounded sequence from below, that is, there exists
a positive constant M5 such that
~My < I((X™®), vk € N.

From Lemma 3.7, it follows that

1 1

=My S I((XM) < DAl KPR = 51() [ XPJ5? + oM.
2

Therefore,

! 1
BI(E)OQHXUC)HSQ — EAmax”)((k)Hg S ]\4’2 +ﬁ2M,Vk € N.

Because of a; > 2, there exists a constant M3z > 0 such that || X®||; < M
for any k € N. That is, {X(®} is a bounded sequence in the finite dimen-
sional space Ejs. Consequently, it has a convergent subsequence. The proof of
Lemma 3.8 is compilete. (]
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For equation (1.2), by (g2), we have

lim M = (0,
z—0 z

which means f(t, z) is superlinear at 0, according to the following integrating
inequality

2f(t,2) > [3’ /Oz ft,s)ds >0,

we see that there are constants §; > 0 and 8, > 0 such that

/ Cf(ts)ds 3 B | 2P —fh vz € R.
: |

We have
(93) there are constants 8, > 0 and 8, > 0, such that

(3.5) / Cf(bs)ds 3 B, | 2P —fl vz € R.
0
By (g3) and (g3), we see that
ft2) > f / f(t,5)ds > 66, | 2 ¥ —B B, V]2l > R.

It follows that
f(t,2)

lim —= = +oc0,
z2——+o00 z
which means that f(¢, z) is superlinear at infinity. So, equation (1.2) is called

superlinear at 0 and at infinity.

Lemma 3.9. Suppose f(¢,z) satisfies (g1) and (g3). Then

1 M
J(z) = 2T Dz — Z F(n,z,)

2 n=1
is bounded above in Ejf.
Proof. By (3.5), for any z € Ey,
M
J(z) = 22TDz- Y F(n,z,)
n=1

’ M ! ’
S %)\mawa”% - /31 21 'wn'ﬁ + HQM
= Pnadlelid = Billzll® + 85M.

Also according to (3.1), there exists a constant é, such that

s éuxn%
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we have
1 l; ' 1 ! 4 ’
T(@) < Ghmaxllls = B1()7 Nlzllg + BoM.

Because of BI > 2, there exists a positive constant M, such that
J(z) < My, Vz € Ejp.
|

Lemma 3.10. Suppose f(t, z) satisfies (g1) and (g3). Then the functional J(z)
satisfies the P.S. condition.

Proof. Let {J(z®)} be a bounded sequence from below, then there exists a
positive constant My such that
~Ms < J((=™),vk € N.
By the proof of Lemma 3.9, it is easy to see that
=My (@) < Xl ®IE - 5 DI + 5y
Thus,
B 1218~ SNl I3 < My + S0, v € N,

Because of 3 > 2, there exists a constant Mg > 0 such that llz®) || < Me
for k € N. That is, {z®} is a bounded sequence in the finite dimensional
sequence E)s. Consequently, it has a convergent subsequence. d

4. Proofs of main results

In what follows, we will prove that Theorems 1.1-1.5 hold respectively.
k
Proof of Theorem 1.1. From ag + Y. |as] < 0 and the fact that there exists
s=1

k
i € N(0,M — 1) such that Y a,cos2i = 0, it follows that \; > 0(j =
s=0
0,1,2,...,M —1). Apparently,
k
0 < Amax < —2a0 + 22 \as\a
s=1
k
Amin > —2a9 — QZ |as| > 0.
s=1
In view of (f2) and the fact f(t,Z) € C*{R x R™,R™) for any t € R, we have
f(t,0) = 0 and F(t,0) = 0. Therefore {X,} = 0, where X,, = 0(n € Z) is a
trivial periodic solution of (1.1) with period M.
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By Lemma 3.5, I is bounded from above on Ej;. We denotecg = sup I(X),
X€EEm

then there exists a sequence {X(*®}2 = where X(*) € Ej, such that ¢, =
klim I(X®)). On the other hand, by (3.3), we have
—oo

1 ,
I(X) < (5Amax — OIXIIE,, + M7 ,VX € En.
2

Therefore, I(X) — —oc as || X||},, — oo, which implies that {X (¥} is bounded,
it has a convergent subsequence { X *)}. Let X = lim X (%), By the continuity

i—»00
of I, I(X) = ¢o. Clearly, X € Ey; is a critical point of I € Ejy.

Let 0 be the [ multiple eigenvalue of the matrix A4, @y,...,p_1 be linearly
independent, eigenvectors of A associated to 0. Denote W = span{ipo,...,91_1}
€ By, then W is an invariable subspace of Ey, Eyy =Y @ W.

We next claim that ¢ > 0.

In fact, by (f2), there exists a constant o, 0 < a < %/\mim such that

(3.6) F(n,Z) < a|Z)%.

According to (3.6), for any X = (X3, Xs,...,Xa)T €Y, || X2 < 6, we obtain

IX) = HEXTALX)- 3 Fn,X,)

2 2 Amin[| X1 — @ E | Xn)?
= (% min )”X”EM

Let 0 = ($Amin — @)6%. Then I(X) > o > 0,VX € Y N 8Bs. Thus we have

shown that ¢p = sup I(X) > o > 0. At the same time, we have also proved
XeEy
that Ilsp;ny > o for o > 0 and § > 0. This implies that I satisfies assumption

(I1) of Lemma 3.2.
Note that ALX = 0 for any X € W, we have

M
I(X) = ALX LX) Z F(n,X,) ==Y F(n,X,) <0.

n=1

It follows that X € Y and the critical point X of I corresponding to the critical
value ¢y is a nontrivial periodic solution of (1.1) with period M.

In order to obtain another nontrivial M-periodic solution of (1.1) different
from X, we will use Lemma 3.2. In view of Lemma 3. 6, It is obvious that I
satisfies the Palais-Smales condition. Furthermore we have also verified that I
satisfies the condition (1) of Lemma 3.2. In the following, we will show the
condition (I) is also satisfied.
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In fact, let 6 = (61,02,...,60)T € 9B1NY and X = rf + Z. Then, for any
Z € W and r € R, we have

I(X) = YALG6+2),L00+2) — 5 F(n, Xn)

n=1

= LAL(r9), L(r)) — % F(n, X,)

< % max|L(r6) I 2_: |7'9n'|"Zﬂ|2 _7’)
= 3 maxr? —/32 (r?16n[? +1Znl* =)
= ( max"ﬂ)r “BHZHEM +M:8'Y

< —BlIZ|E,, +MBy -

It follows that there exists some constant Rs > & such that

I(X)<0 for X€dQ, Q%Y (Bp,nW)a®{r8l0<r < Ry).

By Lemma 3.2, I possesses a critical value ¢ > ¢ > 0, where

=i I ={h g, : hlag = id}.
¢= inf maxI(h(v), T'={heC(Q,En):hloq = id}
Let X € Ep be a critical point corresponding to the critical value ¢ of I,
that is I(X) = ¢. If X # X, then Theorem 1.1 holds. Otherwise, X = X, then
co = I(X) = I(X) = ¢, which is the same as

sup I(X) = inf sup I(h(u)).
XceEy hel ueQ

Choosing h = id, then we have sup I(X) = cg. Because the choice of
XeQ
6 € 9B1 NY C @ is arbitrary, we can take —4 € 8B, NY. Similarly, there

exists a positive number R3 > § such that

I(X)<0 for X €0Q,

where Q; =/ (BraNW)@{~r8|0 < r < R3}. Again by Lemma 3.2, I possesses
a critical value ¢’ >0 >0, and
' = inf I(h(w)),
¢, R 1)
where I't = {h € C(Q1, En) : hlpg, = id}.
If ¢ # ¢o, then the proof of Theorem 1.1 is complete. Otherwise, ¢ =c¢=
sup I(X). Because of the fact that Ilag < 0 and I|ag, < 0, I attains its
Xe
maximum at some points in the interior of sets ) and ¢;. But QD Q1~C W,
and I(X ) <0, VX € W. Thus, there is a critical point X € Ep;, X # X, and
I(X) = C = Cp.
The proof of Theorem 1.1 is now complete. O
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Proof of Theorem 1.2 is similar to that of Theorem 1.1. So we will omit it.

k k
Proof of Theorem 1.8. Note that —ag— Y |as| > 0, thisis, ag < ~— Y |a,|, we
s=1

have \; > 0,5 =0,1,2,... M—1.

According to Lemmas 3.7 and 3.8, the functional I(X) is continuous and
satisfies the P.S. condition in Eas. Again by (fs), 1(X) is even.

Let 0 < Ap < A; < Ay £ --- < Ay_1, and the corresponding linearly
independent eigenvectors be ¢g,$1,d2,...,dn_1 respectively. Assume E; =
span{¢o,...,¢;}, then E; C E; for j < i, Ep = Ujl‘iglEj.

At first, we will prove that the functional I(X) satisfies the condition (S;)
of Lemma 3.3.

By (fa), for any X = (X1, Xy,...,Xu)T € En, [| X2 < p,

I(X) = LILX)TA(LX)- %F(n,Xn)

1 2 i 2
Z 'j)\mm”X“ — Q1 Z—:l |Xn|
Let 0 = (3Amin — @1)p?. Then I(X) > ¢ for X € Ey NoB,.
Next, we will prove that the functional 7(X) satisfies the conditions (Sz) of

Lemma, 3.3.
By (fZ), we obtain

F(t,Z) > p1| Z|** —B2,VZ € R™.
For any X € E;, we have

I(X) = LLX)TALX)- 5° F(n,Xp)
n=1
M
< naxll X[ - 61 X | X2 + 5o M

n=1
< FAmax[XIE = 81 ()2 IX 1152 + B2 M.
It follows that there exists a positive constant R; > p such that

According to Lemma 3.3, we know that the functional I(X) has infinite
critical points, that is, system (1.1) has infinite M-periodic solutions. The
proof of Theorem 1.3 is complete. O

Proof of Theorem 1.4. From the fact that there exist 4, € N(0, M — 1) such

that

k k

2sm 2sm |

Zascosﬁz <0< Zascosﬁj,
s=0 s=20

it follows that the matrix A either has positive eigenvalues, zero eigenvalues,

or negative eigenvalues, Apnin < 0 < Apax.
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Let H; be the vector space consisting of those linearly independent eigenvec-
tors corresponding to the negative eigenvalues and zero eigenvalues of A, and
Hj be the vector space consisting of those linearly independent eigenvectors
corresponding to the positive eigenvalues of A, then Ey; = Hy & Ho.

Assume that e, is the minimum positive eigenvalue of A, e_ is the maximum
negative eigenvalue of A, then e < 0 < ¢,.

According to the conditions in Theorem 1.4, it is not difficult to prove that
the functional 7(X) is bounded from above and satisfies the P.S. condition in
H, and H, respectively, and hence I(X) is bounded from above and satisfies
the P.S. condition in E,,.

By (f2), there exists a constant ay > 0 such that S —ay > 0 with
F(n,X,) < a4|X,|. For any X € Hs, we have

I(X) = L@x)TALX) - %F(n,Xn)

n=1
M
> FILXIP - ar 3 X2

Therefore, I(X) — +o0 as || X|| = +oo, thus there must exist real number 7
such that
I(X)|m, 21> 0.

On the other hand, for any X € H;, we have

I(X) = %(LX)TA(LX)—f;F(n,Xn)
< SIXIP - 3 Pl X,

Again by (f3), it follows that
F(n,X,)>B8|X|* -+ ,n€Z X, € Ey.

Thus,
M

~Y F(n,X,) > —c0 as ||X|| - +oo,

n=1
and hence I(X) — —oo if ||X|| = +00. It follows that there exists a positive
constant R such that
IX)<n-1 if ||X||>R.
Now we denote
S =H;,( =BrNHi,

then I satisfies the conditions of Lemma 3.4, it has at least one nontrivial
M-periodic solution. The proof of Theorem 1.4 is complete. O
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Proof of Theorem 1.5. According to the conditions of Theorem 1.5, the matrix
D is semi-positive definite. Let 0 be ! multiple eigenvalue of D, ¢y, ..., @1 be
linearly independent eigenvectors of D associated to 0.

Define W' = span{po,...,01_1}T € Ep, let Epp = Y ow'.

By Lemma 3.9, Lemma 3.10 and proof of Theorem 1.1, Theorem 1.5 is
apparent. O

Remark 4.1. When k =1 and r; = 1, the equation (1.2) has the same form as
[7]. Our results extend and improve some earlier publications.
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