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ABSTRACT
In this paper, we consider linear periodic
discrete-time control systems under periodic com-
pensation. Such a closed-loop system generally
represents a periodic time-varying system. We
examine the problem of finding a compensator such
that the closed-loop system is realized as LTI model
( if possible) with the closed-loop stability being
satisfied. We present a necessary and sufficient
condition for solving such problem and also give

the characterization of realizable LTI models.

1. INTRODUCTION

Linear periodic systems have been widely

studied as an important class of linear systems. The

main results on linear periodic systems, for
example, structural analysis [1,2], eigenvalue
assignment [3,4], optimal control [5] etc. are

obtained based on state-space representation. Also,
the transfer function approach for linear perjodic
system has been proposed in study of unified
analysis [6], robust control [7}, sensitivity optimi-
zation [8] and so on.

In this paper, we follow the transfer function
approach to consider linear periodic discrete-time
(LPDT)

difference equations:

systems described by following linear

y(k) +Zac(k)y(k-L)=2 b.(k)u(k-L) (1)
or

y(k)=2 bo(k) € (k-L) (2-a)
£ (k) +3 ac(k)E (k-L)=u(k) (2-b)

L=1

where u(k) € RM, y(k) € RF are the system input,
output respectively and the coefficients in both (1)
and (2) vary periodically with period N, i.e., ar(k+N)
=a,.(k) and bo(k+N)=b.(k) .

We examine the problem of matching an LPDT
system with periodic compensator to an LTI model,
termed LTI model realization, i.e., finding an LPDT
compensator (if possible) such that the closed-loop
system is realized as desired LTI model with the
closed-loop stability satisfied. When the plant is
LTI, it is well-known that LTI model realization is
possible if and only if the desired model contains
the unstable

blocking zeros information of the

plant. However, it is less known about the case of

periodic ( or time - varying) systems. In fact, diffe-
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rent from the case of LTI systems, LTI model rea-
lization is not always possible when the plant is
periodic or time~varying.

This problem is first stated by Sakes et al [10],
in which only an example is shown that the closed-
loop 2-periodic LPDT scalar system is realized as
LTI via 2-periodic compensation. In this paper, we
focus on general multi-input multi-output (MIMO)
LPDT systems.

We show that for the transfer function of an
LPDT system, there exists a special doubly coprime
factorization such that every factor in it is lower
(block) triangular when d=0 (d is the unit delay
operator). Then the parametrization of ali LPDT
stabilizing controllers can be obtained using the
known YJB-parametrization by just taking an extra
constraint that the free parameter is chosen to be
lower triangular when d=0. Further, we found the
LTI model realization problem of LPDT systems can
be treated by solving N matrix equations which
very interestingly own the same solution space.
Based on the solutions of those equations, we derive
the necessary and sufficient condition for realizing
the

the closed-loop LPDT system as LTI and



characterization of realizable LTI models.

As a special case of LPDT systems, LTI discrete
system is also considered. We show that, in LTI
model realization i.e., the model matching under
periodic compensation, the merit of using periodic
compensation is only in improving the stability as
pointed by Khargonekar et al [7] and so on.

In the following, we denote the polynomial
matrices by M and the rational polynomial matrices
which have no poles in A (Ais the unit disk,
boundary included) by Ma .

2. LPDT STABILIZATION

For LPDT systems (1) or (2), define
Y(k)={ yT(kN) yT(kN+1) ... y"(kN+N-1) }T
U(k)=[ uT(kN) uT(kN+1) ...uT(kN+N-1)]T

and the d-transform (d=2z""') as

(3)

(o]
Y(d)=% d*v(k).

3

(4)
-0
Then the transfer relation of LPDT systems can be
represented in the LTI form as

Y(d)=a(d)u(d) (5)
using the lifting technique (see [6], [7]). We call
&(d) as the transfer function of LPDT systems in the
view of [8,9].
Proposition 1:

Given an M-input P-output causal LPDT system,
one can canonically associate a PNxMN transfer
function matrix #(d) as in (5) which is lower (block)
triangular when d=0. Conversely, given any PNxMN
transfer function such that §(0) is lower (block)
triangular, there exists an unique N-periodic LPDT
system in form of (1) or (2) which owns the same
transfer relation. 3

This fact motivates that the control problem of
LPDT system can be analysed for #(d) using the
similar techniques known in LTI systems but with
the of LPDT
satisfying Proposition 1.

transfer function compensator
Theorem 1:

Suppose § is the transfer function of a causal
LPDT system. Then there exists a doubly coprime

factorization on g such as

G=A,"'B,=BaA>"" s A BieM (6—‘8.)
and there exist X, Y: & M satisfying
X2 Y2 Az ‘Y1 —f
= (6-b)
-B: A Bz X,

in which every factor is lower triangular when d=0.

Xz
>
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Proof:
Using the known properties for matrix fraction,

one can find a coprime factorization on {§ such as

§=Ri"'B1=B=2fz2"" ; B, BieM.
Let { A1=51_|(0)§1y
Bl=§l_‘(0)§1

and ¢ Az=R2R2""'(0)

{ Bz=§2§2_‘(0)-
Then we get a new coprime factorization such as 3=
A,7'B; = BzAx""

triangular when d=0 since §(0) is lower triangular.

where A, B € M are lower
So there exist Xo, ¥o £ M which satisfy the Bezout
identity
A X+B Y=1

and the general solutions of the above equation
over Ma are derived in the form of

X=xXo-B=T
{ Y=yo+A=zT
Taking T=-Az"'(0)'yo &€ M( & Ma) in (7), we have
solution x,, ¥, £ M such as

X1=Xo*+Bz-A2"'(0)- yo
{ Vi=¥o—Az-A=2"(0) yo
which are lower triangular when d=0 .

, T £ Ma: arbitrary. (7)

Similarly, there exists xz, y= € M (lower trian-
gular when d=0) satisfying XA=+YB==1. So we have
y=1lA=z _ I yaxi—X2y:

Ax][Bz ]— [0 I ],
where A =ya2x,-X2¥: is lower triangular when d=0.

«{

we then obtain the desired factorization.

A
X1

Az A+Y .Y,
Xy =Bz A—=>X,

Defining{ y2—>Y=

Xz—>Xz,

Q.E.D.
Remarks:

In fact, the existence of such factorization has
been pointed by Feintuch et al {8] via time-domain
analysis., Here, we provided the calculation method
based on A-generalized matrix. {J

Let § and T denote the transfer functions of
LPDT plant and LPDT
respectively. Then the LPDT stabilizing problem is

stabilizing controller
to parametrize the class of stabilizing controllers T (
¢(0) are lower triangular) which make the LPDT
closed-loop system stable. Suppose { owns the
doubly coprime factorization shown in Theorem 1
and ¢ has a coprime factorization

{=P7'Q=F""; P, Q, B, e Ma (8)
where det P#0 and det p#0. Then, the stabilizing
problém is equivalently turned to solving the
Bezout equations ( see (11, 121):

PA=+QB==1 or A,p+B.{i=1. (9)



Based on Theorem 1, we have:
Theorem 2:

The class of all LPDT stabilizing controllers is
parametrized in terms of T as

U= (Y -A=T)(X,+B=T) ™' (10-a)
= (X2+TB:) '(Y=2~A:T) ;Te Ma (10-b)
where det(Y,-A=2T) #0, (Y=-A,T)#0, but T(d) is
lower triangular when d=0.
Proof:

Observing that the class (10) is YJB-parametri-
zation, then it suffices to prove why T(0) in (10)
must be lower triangular.

Suppose o is an arbitrary LPDT stabilizing
controller (Zo(0) is lower triangular). Then we have
that {I + @i}~ ' € Ma is lower triangular when d=0.
In case of (10-a), simple calculation shows

{I +ToB2A2""}A=T=Y, - luX,
for some T £ Ma. When d=0,
T(0)=A=z""(0M{I+CaBzA=""}""(0){Y.:(0) ~ Zo(0)X. (0)}
is trivially lower triangular.
The same conclusion exists also for the case of
(10-b).
Q.E.D.

Using the LPDT stabilizing controllers of (10),
various control problems can be treated by deter-
mining free parameter T (T(0) is lower triangular)

without considering the internal stability [12].
3. LTI MODEL REALIZATION

Consider the closed-loop LPDT feedback system
shown in Fig.l (r(k) € R®, u(k) € R™, y(k) € R7).
Using the LPDT stabilizing controllers given by
Theorem 2, we examine the LTI model realization of
LPDT systems.
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Fig.1: LPDT feedback systems
Suppose the input/output equation of LPDT
compensator § is given by
P-U(d)=-Q- ¥(d) + K- R(d) (11)
where P, [-Q K] &€ Ma are left coprime. Then from
(10), there exists Uo such that
P=Uo(X=2+TB1)

Q=Ug(Y=-TA:) (12)
K=Ug*k ; Uo: unimodular
where T, k € Ma are lower triangular when d=0 to
ensure the causality of LPDT compensators.
The closed-loop transfer function R(d)—Y(d) in
Fig.l is
Gor=Ba-k ; KeMa (13)
where &(0) is lower triangular. In general, Gec.
represents a periodically time-varying system. The
LTI model realization problem of finding an LPDT
compensator ¢ such that the closed-loop system is
realized as LTI, can then be interpreted as the
problem of picking up the subclass of (13) which
represents a set of LTI models (if it is not empty).
Let Gm € MA be a non—-zero LTI model. By viewing
G. as N-periodic system, we have the transfer
function of the model under N-periodic description
in the form of
G:(d) dGn(d) ... dG=(d)
Gu(d)= Gz(d) Gi(d) ... dGa(d) (14)
Gnl(d) Gn-1(d) ... Gi(4d)
where G., Gz, ... ,Gn are defined from
Gu(A)=Gi(AN) +A G2 AN) + ... + AN Gu( A7)

(A =2z"') as shown by Khargonekar et al {7]. Then

. the plant % is said to be LTI model realizable if

there exists G. € Ma (#0) as in (14) such that

GL=Bz'k (18)
being satisfied for some kK € Ma ( &k(d) is lower trian-
gular when d=0).

For any k& Ma ( k(0) is lower triangular), we let

%G5 {dKu , 1< K& M (16-2)
k(i,4) = ; & ~

Pk iz, 7 T0ET B
and define

K;=[Ki;T Kas™ ... KniT17,3,§=1...N). (16-b)
If LPDT plant & is LTI model realizable, then (15)

satisfies for some G. & Ma (#0). Using definition
(16), we equivalently transfer (15) into

b K, =bzKz=...=bnKn=Go (17)
where

b =Ba,

by=Uz"""b,Vy, j=2...N

b =Uz2"b Ve,

0 In-s (18)
Uz=
d='l, 0 ] NxN block,
dli; O
Vie1= R
0 In-:) NxN block, j=1...N

and Go=[G:T G=2T ... GuT]7.
Then solving K, Kz ... Kn & Ma which satisfy (17),
the condition for LTI model realization and the



characterization of realizable LTI models can be
trivially derived. And in fact, we found that (17)

can be divided into following equations:

K
Uz'(Uz2""'Bz ‘Bz)[_‘ ] =0
N Kz
o % |
Uz (Ue 'Ba “BE) = =0
Ka J
(19)
U="""(Uz""'Ba —Bz)[ j,_x}zo
Kt
K
Uz™(Uz""B2 ‘Bz)[ _N ]:0
di.
and
Go=1/N-(b: bz ... ba) (Ki T K™ ... Kn™)7T (20)
=1/N+(B2 Uz'Bz ... U="""B2)(R: T Ka"... k™)™
where K=K,
K:i=V;K;; j=2...N. (21)

Note that, since Uz is non-singular, N matrix
equations (19) have the same solution space with
the equation :

(U="'Bz -B2)X=0; X: with suitable size.
This

(22)
is a very important fact in deriving the
condition for LTI model realization.

Let the general solution of (22) be denoted by
(23)
is a special solution of (22) with

X =% w; w&Ma: arbitrary
where ¢ & Ma
independent columns and there exists a matrix v*¢
Ma such that 9*-v=1.

From (19), we have

{zn X T} 1/2
o =9-Ty = -
Bzl =T |} 1/2
M= i T=
t_ (=9 Tz = "
[ E 12T
(24)
Tfme il v
Sl TS L“TN"}
LKn g L‘ETN—l
and
TR [9:Tw]
P =0T =
Lag, h ’LQETNJ
where T, Tz...Tw & Ma with suitable size and
\7:[\71T \A/ET]T-

However the parameters T, Tz...T~ in (24) can

not be chosen freely, they must be determined in

such a way that (24) stand simultaneously.
Rearranging (24), we have
SRy =dT e T =00 T
J Ra= G2-T: =0i-Ta
| (25)
N N
ie., (doi-¥2)(T\7 Ta7 ... TaT)T=0 (26-2)

and
(K17 K2™ oo KnT)T=%(Th 7 T27 W T™)T (26-b)
where
Vi =diag(V: 1 .. V1)
(_J-(l.:ﬁo_ql\zz (27)
dv20.. 0,0

0 0..dé=10l.
Similar to (22), let the general solution of (26-a) be
given as
(28)

is a special solution of (26-a) with

(T:7 T27 ... TnT)T=Wo* w;w & Ma : arbitrary
where wo € Ma
independent column and there exists wo* & Ma such
that wo** wo=1. So we have

(KiT Kz ... Ku™)"=diag {1 V2 ...Vn}-

®:TR=T KT

=V- w;w & Ma (29)
in (16) and also
Go=1/N-(b: bz..bn)(K:T K27 ...Kx™)7"
=B - w; weMa (30)
where
Vi=diag ' {IVz ..Vn} %1 - wo- @ (31)
B:=1/N-(b, bz..bn)V

from (20), (21).
Theorem 3:
The LTI model realization of LPDT plant is

possible if and only if
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B#0. (32)
And although we used the special solutions ¢ and wq
( not unique) , the condition (32) is independent of
the choice of the special solutions.
Proof:

First part of the proof:

if: It is trivial from the deriving routine of (30).
If 8#0, then from (31-b) there is B& Ma
such that §=d~'-B. Taking w=d-W (We M),
have

(KiTKe™ . Kn™)T=V-d-WeMa (We Ma)
which satisfy (15) and (17) for G £ MAa#0 (Go=3-W#
0). i.e., The LTI model realization is possible.

only if :

we

Second part of the proof:

Suppose there are another pair of special
solutions p and w besides § and wo in (23) and (28).
the of

according to the properties of matrix, there exist

Between two pairs special solutions,

two unique unimodular matrix ¢ and ¥ such that
V=pp or p=vep~’

and wWo=wy® 0Or w=wey '

Defining p=[p, T p="]" as in (24), we have

pr=v: ¢~ and p=2=V=20"".



Then (26-a) in form of §: and p= becomes
(dp,—p=2)(T:’ T2" ...Tw")=0. (33)
Since w is the special solution of (26-a) with
independent columns besides wa.

diag {@ @ ... p} W
is the similar solution of (33). Then under the new
pair of special solutions,

Brew=1/N-(by bz .. bn) View

=1/N-(b: bz ..bn)-diag ' {IVz..Vu}-p:
-diag {¢ ¢ ... ¢} w
=1/N-(b; bz ...bn) -diag ' {IVz ...Vn} ¥

diag~'{p @#...0}-diag {@¢ @...0}  wo* ¥
=§- ¥; ¥: unimodular.

Clearly, §#0 is independent of the choice of the

special solution.
Q.E.D.

Theorem 3 shows the necessary and éufficient
condition for LTI model realization via solving
matrix equation. We can also trivially parametrize
the class of realizable LTI models for LPDT plants.

Observe that in (29) diag='{I Vz ... Vn} has
unstable pole at d=0. Generally V will have the same
unstable pole, it results in that @ in (29) or (30) can
not be freely chosen to ensure K; Kz...Kn & Ma and
Go & Ma (i.e., in (15) K, G &€Ma ).

Define the set Q. as follows,

QL:={Q | QeMrand V-Q& M}

Q: with suitable size.

(34)

Obviously this set has non-zero elements if we
choose Q=d-W, We Ma (#0). Then, w in (29) or (30)
should be chosen from the elements of Q..

Theorem 4:
The class of realizable LTI models is given by

Go =B w;w £QL: arbitrary (35)

where
Go=[{G:T G=2"...GnT]7T

and the LTI model is

Gm(A)=G(AM)+A " Ga( AN+ + AN Gu(A YY),
(A=z"").
Proof: It is trivial from Theorem 3 and above
statements.

Q.E.D.

4. LTI MODEL REALIZATION OF LTI PLANTS

For LTI discrete systems, LTI model realization
is the
veriodic compensation. Let the transfer function of
LTI discrete plant be denoted by G which owns
doubly coprime factorization:

problem model matching problem under
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G=A,"'B1=Bz2A2"", A, Bie M (36-a)
and there exists X:, Y, & M such that
X2 Yz“\ TAz -Y, !
= | (36-b)

-B: A, Bz X, ..
When LTI compensation is used, it is known that
the class of matching models is given by
Gm=Bz-K; K& Ma . (37)
However in this case, the model matching with
stable compensator is possible if and only if the
P.I.P. condition on the plant is satistied {12].

Then one may ask what is the difference when

periodic compensation is used. In this case, by
viewing the plant as N-periodic LPDT plant
(N:arbitrary chosen), we have the doubly coprime
factorization of the plant under N-periodic
representation:

§=8 '8 =B28="", B, Mg M (38-a)
and there exists &, ¥ &€ M such that

% ¥2 Bz ~¥. T
[—él Z\J:[sz x] (38-0)

where j, &, % and ¥ are transformations of A:, B;,
X; and Y, defined as getting G. from G. in (14). The
doubly coprimeness in (38) can be easily checked
via matrix calculation based on (14).

The LTI model realization in this case is to find &
& Ma which is lower triangular when d=0 such that
(39)
stands where G. represents some LTI model. (39)

GL =82k

can be then equivalently transferred into
b, K. =bEK2=-'v=bNKN=GQ
where b, =8z,
by=b,V,, j=2..N,
0
v, =[
IN~J+!

Clearly (39) is solvable for any plant if we take

(40)

IJ—I
NxN block.

K;=V;K, ( K:: arbitrary). i.e.,

a; dan ... da=

- az= an eew daa
k= (4D
, @1, Az ... an & Ma arbitrary,

an AN~1 e &%

that means LTI model realization is possible for any
LTI discrete plant.

On the class of realizable LTI models, we have:
Theorem 5:

The class of realizable LTI models for LTI plants
is the same with (37) which represents the class of
matching models when LTI compensation is used.
Proof:

For any model Gm &€ M in (37), there exists Km €



Ma such that

Gum=Bz-Kn.
Then translating Ga., K into §m, &= as in (14), there
is

Gm =Bakm
i.e., any models in (37) is realizable under periodic
compensation.

Inversely, suppose there is a model which is
realizable under periodic compensation but can not
be matched under LTI compensation i.e., there is a
model G. &€ Ma (N-periodic representatiovn of model
Gwm) and kK& Ma (R(0) is lower triangular) such that

G.=8z2k or b;Ki=hzKz=...=bnKn=Go

as in (39) or (40).

Neote that if we let Ki=[a:T a=T ... an™]7 and
construct km in form of (41), then G, =§zkm also

stands, which is equivalent to

Gu=B2"Knm (42)
where
Kam(A)=a 1 (AM)+ A az(AM)+ .o+ AN Pan(A)
and K e Ma (A=27").
Obviously, (42) contradicts the assumption.
Q.E.D.

Remarks:

This theorem means no better models can be
realized by using periodic compensation than using
LTI compenation for LTI discrete plant. O

However, by suitably choosing the period
number N, it is pointed out that the unstable
blocking zeros of the original plant can be made to
disappear under the N-periodic representation. And
consequently, the strong stabilization is possible
for any LTI discrete plant via periodic compensa-

tion (see [7] and so on).

5. CONCLUSION

In this paper, we have proposed and solved the
LTI model realization problem of LPDT systems. A
necessary and sufficient condition for realizing the
LPDT closed-loop systems as LTI model is given. We
have also shown the difference between using
periodic compensation and using LTI compensation
in model matching problem for LTI discrete systems.
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