• Title/Summary/Keyword: packaging system

Search Result 919, Processing Time 0.026 seconds

Study on Improvement of Signal to Background Ratio of Laser-based Fluorescence Imaging System (레이저 기반 형광 영상 시스템의 Signal to Background Ratio 향상 연구)

  • Kim, J.H.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.107-111
    • /
    • 2020
  • Recently, as an aging society progresses, a lot of interest in health and diagnosis is increasing, As the field of various bio-imaging systems for guided surgery capable of accurate diagnosis has emerged as important, a Fluorescence imaging system capable of accurate measurement and real-time confirmation has emerged as an important field. Fluorescence images currently being used are mainly in the NIR-I band, but many studies are in progress in the NIR-II band in order to improve resolution and confirm fluorescence deeply and accurately. In this paper, the difference between NIR-I and NIR-II, optical characteristics, and SBR (signal to background ration) of a fluorescent imaging system, was investigated using the finite element (FEM) method. After confirming, it was confirmed that the SBR was 16.2 times higher in the NIR-II area than in the NIR-I by making the skin phantom and measuring the fluorescence. It is confirmed that the enhancement in SBR of the Fluorescence imaging system is more effective in the NIR-II region than in the NIR-I region and expected to be used in application fields such as guided surgery, bio-sensor and also device which can detect the defect of optical devices.

Technology Development Strategy of Piggyback Transportation System Using Topic Modeling Based on LDA Algorithm

  • Jun, Sung-Chan;Han, Seong-Ho;Kim, Sang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.261-270
    • /
    • 2020
  • In this study, we identify promising technologies for Piggyback transportation system by analyzing the relevant patent information. In order for this, we first develop the patent database by extracting relevant technology keywords from the pioneering research papers for the Piggyback flactcar system. We then employed textmining to identify the frequently referred words from the patent database, and using these words, we applied the LDA (Latent Dirichlet Allocation) algorithm in order to identify "topics" that are corresponding to "key" technologies for the Piggyback system. Finally, we employ the ARIMA model to forecast the trends of these "key" technologies for technology forecasting, and identify the promising technologies for the Piggyback system. with keyword search method the patent analysis. The results show that data-driven integrated management system, operation planning system and special cargo (especially fluid and gas) handling/storage technologies are identified to be the "key" promising technolgies for the future of the Piggyback system, and data reception/analysis techniques must be developed in order to improve the system performance. The proposed procedure and analysis method provides useful insights to develop the R&D strategy and the technology roadmap for the Piggyback system.

Low-Cost Position Sensorless Switched Relutance Motor Drive Using a Single-Controllable Switch Converter

  • Yang, Hyong-Yeol;Kim, Jae-Hyuck;Krishnan, R.
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Elimination of rotor position sensors mechanically coupled with the rotor shaft is attractive to variable speed drives primarily due to increased system reliability and cost reduction. In this regard, search for a simple and robust position sensorless control has been intensified in past few years specifically for low-cost, high-volume applications such as home appliances. This paper describes a new parameter insensitive position sensorless control for switched reluctance motor (SRM) drives satisfying such a need in this market segment. Two consecutive switch-on times of the controllable switch in hysteresis current control are compared to estimate the rotor position and speed. The proposed sensorless control algorithm is very simple to implement since it does not depend on extensive computation or any additional hardware. In addition, the proposed method is robust in that its dynamic performance is least affected by system parameter variations. The proposed approach is demonstrated on a single-controllable-switch-converter-driven SRM with two-phases that lends itself to a system with low cost and compact packaging which comes close to the intended applications. Analysis and simulation results followed by experimental verification are presented to demonstrate the feasibility of the proposed sensorless control method.

Environmental Impact Evaluation of Virgin Pulp Using Life Cycle Assessment Methodology (LCA기법을 이용한 천연펄프의 환경 영향 평가)

  • 김형진;조병묵;황용우;박광호
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • Life Cycle Assessment for the pulp, which is mainly used as the raw material of fine paper, base paper for food packaging and paper cup, has been carried out in this study to consider environmental aspects by quantifying the environmental emission and to evaluate its environmental impact potential. The system boundary was selected from cradle to gate stage(raw material acquisition, transportation of raw material and product manufacturing) of the product. Environmental impact was divided into 8 categories considering Korean situation: abiotic resource depletion, global warming, ozone depletion, acidification, eutrophication, photochemical oxidant creation, ecotoxicity and human toxicity. In Life Cycle Impact Assessment(LCIA) methodology phase, Ecopoint, Eco-indicator 95 and Korean eco-indicator were used and the results carried out by each methodology were compared. The results from this study were also compared with those of foreign study to verify the reliability of the results. The results of the study could be utilized as the basic data for Environmental Management System(EMS), Design for Environment(DfE) and Type III eco-labeling in the paper and paper-related industry.

A Study on Protection of Visual Information Design by Arbitration (중재제도를 활용한 시각정보디자인 보호에 관한 연구)

  • Kim, Sung-Ryong;Kim, In-Kyung
    • Journal of Arbitration Studies
    • /
    • v.26 no.1
    • /
    • pp.53-72
    • /
    • 2016
  • The importance of design is emphasized in many industries. It began to earn recognition as part of industry rather than the arts. In particular, utilization of visual information design including moving images, packaging, advertisement, publication, editorial and visual information processing is higher than others in the design field. However, disputes relating to intellectual property rights have been also increasing as it became known. Therefore, now is the time to consider and establish an effective dispute settlement system for the design industry. In this view, arbitration will be a suitable method for dispute settlement in visual information design because of characteristics such as confidentiality, professionalism, efficiency, economy and flexibility. However, Arbitration system is not well known to the people who work in this industry. Thus, in order to aggressively advertise the arbitration system, an arbitration institution has to appoint design experts as new arbitrators for domestic and international arbitration. Next, an arbitration institution needs to prepare the new and expediting rules with design field characterization. Finally, it has to plan to cooperate with all of the institutions and schools concerned.

Non-destructive Inspection of Semiconductor Package by Laser Speckle Interferometry (레이저 스페클 간섭법을 이용한 반도체 패키지의 비파괴검사)

  • Kim, Koung-Suk;Yang, Kwang-Young;Kang, Ki-Soo;Choi, Jung-Gu;Lee, Hang-Seo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.81-86
    • /
    • 2005
  • This paper proposes a non-destructive ESPI technique to quantitatively evaluate defects inside a semiconductor package. The inspection system consists of the ESPI system, a thermal loading system and an adiabatic chamber. The technique is high feasibility for non-destructive testing of a semiconductor and overcomes the weaknesses of previous techniques, such as time-consumption and difficult quantitative evaluation. Most defects are classified as delamination defects, resulting from the insufficient adhesive strength between layers and from non-homogeneous heat spread. Ninety percent of the tested samples had delamination defects which originated at the corner of the chip and nay be related to heat spread design.

Optimized Digital Proportional Integral Derivative Controller for Heating and Cooling Injection Molding System

  • Jeong, Byeong-Ho;Kim, Nam-Hoon;Lee, Kang-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1383-1388
    • /
    • 2015
  • Proportional integral derivative (PID) control is one of the conventional control strategies. Industrial PID control has many options, tools, and parameters for dealing with the wide spectrum of difficulties and opportunities in manufacturing plants. It has a simple control structure that is easy to understand and relatively easy to tune. Injection mold is warming up to the idea of cycling the tool surface temperature during the molding cycle rather than keeping it constant. This “heating and cooling” process has rapidly gained popularity abroad. However, it has discovered that raising the mold wall temperature above the resin’s glass-transition or crystalline melting temperature during the filling stage is followed by rapid cooling and improved product performance in applications from automotive to packaging to optics. In previous studies, optimization methods were mainly selected on the basis of the subjective experience. Appropriate techniques are necessary to optimize the cooling channels for the injection mold. In this study, a digital signal processor (DSP)-based PID control system is applied to injection molding machines. The main aim of this study is to optimize the control of the proposed structure, including a digital PID control method with a DSP chip in the injection molding machine.

Prediction of the Impact Lifetime for Board-Leveled Flip Chips by Changing the Design Parameters of the Solder Balls (플립칩의 설계변수 변화에 따른 보드레벨 플립칩에서의 낙하충격 수명예측)

  • Lee, Soo Jin;Kim, Seong Keol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.117-123
    • /
    • 2015
  • The need for drop simulations for board-leveled flip chips in micro-system packaging has been increasing. There have been many studies on flip chips with various solder ball compositions. However, studies on flip chips with Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu have rarely been attempted because of the unknown material properties. According to recent studies, drop simulations with these solder ball compositions have proven feasible. In this study, predictions of the impact lifetime by drop simulations are performed considering Cu and Cu/Ni UBMs using LS-DYNA to alter the design parameters of the flip chips, such as thickness of the flip chip and size of the solder ball. It was found that a smaller chip thickness, larger solder ball diameter, and using the Cu/Ni UBM can improve the drop lifetime of solder balls.

Sensor enriched infrastructure system

  • Wang, Ming L.;Yim, Jinsuk
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.309-333
    • /
    • 2010
  • Civil infrastructure, in both its construction and maintenance, represents the largest societal investment in this country, outside of the health care industry. Despite being the lifeline of US commerce, civil infrastructure has scarcely benefited from the latest sensor technological advances. Our future should focus on harnessing these technologies to enhance the robustness, longevity and economic viability of this vast, societal investment, in light of inherent uncertainties and their exposure to service and even extreme loadings. One of the principal means of insuring the robustness and longevity of infrastructure is to strategically deploy smart sensors in them. Therefore, the objective is to develop novel, durable, smart sensors that are especially applicable to major infrastructure and the facilities to validate their reliability and long-term functionality. In some cases, this implies the development of new sensing elements themselves, while in other cases involves innovative packaging and use of existing sensor technologies. In either case, a parallel focus will be the integration and networking of these smart sensing elements for reliable data acquisition, transmission, and fusion, within a decision-making framework targeting efficient management and maintenance of infrastructure systems. In this paper, prudent and viable sensor and health monitoring technologies have been developed and used in several large structural systems. Discussion will also include several practical bridge health monitoring applications including their design, construction, and operation of the systems.

A study on the application of heat pipe to the cooling of ATM switching system (전자교환시스템 냉각을 위한 히트파이프 적용 연구)

  • Kim, W.T.;Lee, Y.P.;Yoon, S.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.497-503
    • /
    • 1997
  • In the present study, the cooling package using the heat pipe has been developed to improve the thermal performance in the point of cooling characteristics of the electronic chip placed to the subrack being readily assembled and disassembled in ATM switching system. As the preliminary experiments, the cooling performances between a conventional way using a cooling fin and a proposed method applying the heat pipe are compared and analyzed. The cooling performance at a simulated electronic component packaging a heat pipe module is approximately achieved up to $5.0W/cm^2$ heat flux and the allowable temperature at the heated chip is sustained in the range within $70^{\circ}C$. From the results, it is confirmed that temperature oscillations are also settled by inserted wick in the evaporator section. From the user's viewpoint, the method to assemble and disassemble the heat pipe easily has been devised.

  • PDF