• Title/Summary/Keyword: p-i-n Junction

Search Result 100, Processing Time 0.03 seconds

A Study on the Electrical Characteristic Analysis of c-Si Solar Cell Diodes

  • Choi, Pyung-Ho;Kim, Hyo-Jung;Baek, Do-Hyun;Choi, Byoung-Deog
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • A study on the electrical characteristic analysis of solar cell diodes under experimental conditions of varying temperature and frequency has been conducted. From the current-voltage (I-V) measurements, at the room temperature, we obtained the ideality factor (n) for Space Charge Region (SCR) and Quasi-Neutral Region (QNR) of 3.02 and 1.76, respectively. Characteristics showed that the value of n (at SCR) decreases with rising temperature and n (at QNR) increases with the same conditions. These are due to not only the sharply increased SCR current flow but the activated carrier recombination in the bulk region caused by defects such as contamination, dangling bonds. In addition, from the I-V measurements implemented to confirm the junction uniformity of cells, the average current dispersion was 40.87% and 10.59% at the region of SCR and QNR, respectively. These phenomena were caused by the pyramidal textured junction structure formed to improve the light absorption on the device's front surface, and these affect to the total diode current flow. These defect and textured junction structure will be causes that solar cell diodes have non-ideal electrical characteristics compared with general p-n junction diodes. Also, through the capacitance-voltage (C-V) measurements under the frequency of 180 kHz, we confirmed that the value of built-in potential is 0.63 V.

V-I Curves of p-ZnO:Al/n-ZnO:Al Junction Fabricated by RF Magnetron Sputtering

  • Jin, Hu-Jie;Jeong, Yun-Hwan;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.575-579
    • /
    • 2008
  • Al-doped p-type ZnO films were fabricated on n-Si (100) and homo-buffer layers in pure oxygen at $450^{\circ}C$ of by RF magnetron sputtering. Target was ZnO ceramic mixed with 2 wt% $Al_2O_3$. XRD spectra show that the Al-doped ZnO thin films have ZnO crystal structure and homo-buffer layers are beneficial to Al-doped ZnO films to grow along c-axis. Hall Effect experiments with Van der Pauw configuration show that p-type carrier concentrations are ranged from $1.66{\times}10^{16}$ to $4.04{\times}10^{18}\;cm^{-3}$, mobilities from 0.194 to $2.3\;cm^2V^{-1}s^{-1}$ and resistivities from 7.97 to $18.4\;{\Omega}cm$. p-type sample has density of $5.40\;cm^{-3}$ which is smaller than theoretically calculated value of $5.67\;cm^{-3}$. XPS spectra show that Ols has O-O and Zn-O structures and Al2p has only Al-O structure. P-ZnO:Al/n-ZnO:Al junctions were fabricated by magnetron sputtering. V-I curves show that the p-n junctions have rectifying characteristics.

Electrical Properties of V-I Curve of p-ZnO:Al/n-ZnO:Al Junction Fabricate by RF Magnetron Sputtering

  • Jin, Hu-Jie;So, Soon-Jin;Song, Min-Jong;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.408-409
    • /
    • 2007
  • Al-doped p-type ZnO films were fabricated on n-Si (100) and homo-buffer layers in pure oxygen at $450^{\circ}C$ by RF magnetron sputtering. Target was ZnO ceramic mixed with 2wt% $Al_2O_3$. XRD spectra show that the Al-doped ZnO thin films have ZnO crystal structure and homo-buffer layers are beneficial to Al-doped ZnO films to grow along c-axis. Hall Effect experiments with Van der Pauw configuration show that p-type carrier concentrations are ranged from $1.66{\times}10^{16}\;to\;4.04{\times}10^{18}cm^{-3}$, mobilities from 0.194 to $2.3cm^2V^{-1}s^{-1}$ and resistivities from 7.97 to $18.4{\Omega}cm$. P-type sample has density of $5.40cm^{-3}$ which is smaller than theoretically calculated value of $5.67cm^{-3}$. XPS spectra show that O1s has O-O and Zn-O structures and A12p has only Al-O structure. P-ZnO:Al/n-ZnO:Al junctions were fabricated by magnetron sputtering. V-I curves show that the p-n junctions have rectifying characteristics.

  • PDF

Experimental Study for Effect of Banhasasim-tang on Mice with Reflux Esophagitis (역류성 식도염 유발 생쥐의 반하사심탕(半夏瀉心湯)투여 효과에 대한 실험 연구)

  • Jang, Myeong-Woong;Lim, Seong-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.362-374
    • /
    • 2013
  • Objectives : This study was carried out to investigate the inhibitory effect of Banhasasim-tang on early reflux esophagitis by control of gastric peristalsis and the lower esophageal sphincter in mice. Methods : Experimental mice were classified into three groups. The normal group were mice with no inflammation. The control group were mice with gastroesophageal reflux elicited by alcohol. The sample group were mice administered Banhasasim-tang after gastroesophageal reflux elicitation. We observed morphological change and production of ghrelin, substance P, and inducible nitric oxide synthase (iNOS) in gastroesophageal junction mucosa. In addition, we examined change of epithelial junction in esophageal mucosa and change of lower esophageal sphincter distribution. Results : The migration of inflammation-related cells in lamina propria of gastroesophageal junction decreased more in the sample group than in the control group. The positive reaction of ghrelin, substance P, and iNOS significantly decreased more in the sample group than in the control group (p<0.05). Injury of the epithelial junction in the esophageal mucosa and outer oblique layer in the lower esophageal sphincter were significantly mitigated by Banhasasim-tang administration in the sample group (p<0.05). Conclusions : According to the above results, it is supposed that Banhasasim-tang inhibits early reflux esophagitis by controlling not only gastric peristalsis and acid secretion through ghrelin, and substance P but also the lower esophageal sphincter through iNOS.

Improving Device Efficiency for n-i-p Type Solar Cells with Various Optimized Active Layers

  • Iftiquar, Sk Md;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.70-73
    • /
    • 2017
  • We investigated n-i-p type single junction hydrogenated amorphous silicon oxide solar cells. These cells were without front surface texture or back reflector. Maximum power point efficiency of these cells showed that an optimized device structure is needed to get the best device output. This depends on the thickness and defect density ($N_d$) of the active layer. A typical 10% photovoltaic device conversion efficiency was obtained with a $N_d=8.86{\times}10^{15}cm^{-3}$ defect density and 630 nm active layer thickness. Our investigation suggests a correlation between defect density and active layer thickness to device efficiency. We found that amorphous silicon solar cell efficiency can be improved to well above 10%.

InAs/GaAs 양자점 태양전지의 여기광 세기에 따른 Photoreflectance 특성 연구

  • Lee, Seung-Hyeon;Min, Seong-Sik;Son, Chang-Won;Han, Im-Sik;Lee, Sang-Jo;Smith, Ryan P.;Bae, In-Ho;Kim, Jong-Su;Lee, Sang-Jun;No, Sam-Gyu;Kim, Jin-Su;Choe, Hyeon-Gwang;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.426-426
    • /
    • 2012
  • 본 연구에서는 GaAs p-i-n 접합 구조에 InAs 양자점을 삽입한 양자점 태양전지(Quantum Dot Solar Cell; QDSC)의 내부 전기장(internal electric field)을 조사하기 위하여 Photoreflectance (PR) 방법을 이용하였다. QDSC 구조는 GaAs p-i-n 구조의 공핍층 내에 8주기의 InAs 양자점 층을 삽입하였으며 각 양자점 층은 40 nm 두께의 i-GaAs로 분리하였다. InAs/GaAs QDSC는 분자선박막 성장장치(molecular beam epitaxy; MBE)를 이용하여 성장하였다. 이 때 양자점의 형성은 InAs 2.0 ML(monolayer)를 기판온도 $470^{\circ}C$에서 증착하였다. QDSC 구조에서 여기광원의 세기에 따른 전기장의 변화를 조사하였다. 아울러 양자점 층 사이의 i-GaAs 층 내에 6.0 nm의 AlGaAs 퍼텐셜 장벽(potential barrier)을 삽입하여 퍼텐셜 장벽 유무에 따른 전기장 변화를 조사하였다. PR 측정에서 여기광원으로는 633 nm의 He-Ne 레이저를 이용하였으며 여기광의 세기는 $2mW/cm^2$에서 $90mW/cm^2$까지 변화를 주어 여기광세기 의존성실험을 수행하였다. 여기광의 세기가 증가할수록 photovoltaic effect에 의한 내부 전기장의 변화를 관측할 수 있었다. PR 결과로부터 p-i-n 구조의 p-i 영역과 i-n 접합 계면의 junction field를 검출하였다. p-i-n의 i-영역에 양자점을 삽입한 경우 PR 신호에서 Franz-Keldysh oscillation (FKO)의 주파수가 p-i-n 구조와 비교하여 변조됨을 관측하였다. 이러한 FKO 주파수성분은 fast Fourier transform (FFT)을 이용하여 검출하였다. FKO의 주파수 성분들은 고전기장하에서 electron-heavyhole (e-hh)과 electron-lighthole (e-lh) 전이에 의해 나타나는 성분으로 확인되었다.

  • PDF

Comparison Study on Electrical Properties of SiGe JFET and Si JFET (SiGe JFET과 Si JFET의 전기적 특성 비교)

  • Park, B.G.;Yang, H.D.;Choi, C.J.;Shim, K.H.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.910-917
    • /
    • 2009
  • We have designed a new structures of Junction Field Effect Transistor(JFET) using SILVACO simulation to improve electrical properties and process reliability. The device structure and process conditions of Si control JFET(Si JFET) were determined to set cut off voltage and drain current(at Vg=0 V) to -0.46 V and $300\;{\mu}A$, respectively. Among many design parameters influencing the performance of the device, the drive-in time of p-type gate is presented most predominant effects. Therefore we newly designed SiGe JFET, in which SiGe layers were placed above and underneath of Si-channel. The presence of SiGe layer could lessen Boron into the n-type Si channel, so that it would be able to enhance the structural consistency of p-n-p junction. The influence of SiGe layer could be explained in conjunction with boron diffusion and corresponding I-V characteristics in comparison with Si-control JFET.

Carrier Lfetime and Anormal Cnduction Penomena in Silicon Epitaxial Layer-substrate Junction (Epitaxial에 의한 Si epi층의 케리어 수명과 P-N접합의 이상전도현상)

  • 성영권;민남기;김승배
    • 전기의세계
    • /
    • v.26 no.5
    • /
    • pp.83-89
    • /
    • 1977
  • This paper described the minority carrier lifetime in Si epitaxial layer, and also the voltage (V) versus current (I) characteristics of high resistivity Si epitaxial layer0substrate junction. The measured lifetime in Si epi-layer was much shorter than in bulk, and the temperature dependence of lifetime was found to agree well with Shockley-Read model of recombination which applies to high resistivity n-type materials. The V-I curve showed; an ohmic region (I.var.V), a sublinear region (I.var.V$^{1}$2/), a space charge limited current region (I.var.V$^{2}$), and finally a negative resistance region. We investigated these phenomena by the theory of the relaxation semiconductor.

  • PDF

The Effect of Fixed Oxide Charge on Breakdown Voltage of p+/n Junction in the Power Semiconductor Devices (전력용 반도체 소자의 설계 제작에 있어서 Fixed oxide charge가 p+/n 접합의 항복전압에 미치는 영향)

  • Yi, C.W.;Sung, M.Y.;Choi, Y.I.;Kim, C.K.;Suh, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.155-158
    • /
    • 1988
  • The fabrication of devices using plans technology could lend to n serious degradation in the breakdown voltage as a result of high electric field at the edges. An elegant approach to reducing the electric field at the edge is by using field limiting ring. The presence of surface charge has n strong influrence on the depletion layer spreading at the surface region because this charge complements the charge due to the ionized acceptors inside the depletion layer. Surface charge of either polarity can lower the breakdown voltage because it affects the distribution of electric field st the edges. In this paper we discuss the influrences of fixed oxide charge on the breakdown voltage of the p+/n junction with field limiting ring(or without field limiting ring).

  • PDF

Current-voltage characteristics of n-AZO/p-Si-rod heterojunction

  • Lee, Seong-Gwang;Choe, Jin-Seong;Jeong, Nan-Ju;Kim, Yun-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.338.2-338.2
    • /
    • 2016
  • Al doped ZnO (AZO) thin films were deposited on Si substrates with rod-shaped-surface by pulsed laser deposition method (PLD). Si-rods were prepared through chemical etching. To analyze the influence on the formation of the rod structure, samples with various chemical etching conditions such as AgNO3/HF ratio, etching time, and solution temperature were prepared. The morphology of Si-rod structures were examined by FE-SEM. Fig. 1 shows a typical structure of n-AZO/p-Si-rod juncions. The fabricated n-AZO/p-Si-rod devices exhibited p-n diode current-voltage characteristics. We compared the I-V characteristics of n-AZO/p-Si-rod devices with the samples without Si-rod structure.

  • PDF