Browse > Article
http://dx.doi.org/10.4313/TEEM.2017.18.2.70

Improving Device Efficiency for n-i-p Type Solar Cells with Various Optimized Active Layers  

Iftiquar, Sk Md (College of Information and Communication Engineering, Sungkyunkwan University)
Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
Publication Information
Transactions on Electrical and Electronic Materials / v.18, no.2, 2017 , pp. 70-73 More about this Journal
Abstract
We investigated n-i-p type single junction hydrogenated amorphous silicon oxide solar cells. These cells were without front surface texture or back reflector. Maximum power point efficiency of these cells showed that an optimized device structure is needed to get the best device output. This depends on the thickness and defect density ($N_d$) of the active layer. A typical 10% photovoltaic device conversion efficiency was obtained with a $N_d=8.86{\times}10^{15}cm^{-3}$ defect density and 630 nm active layer thickness. Our investigation suggests a correlation between defect density and active layer thickness to device efficiency. We found that amorphous silicon solar cell efficiency can be improved to well above 10%.
Keywords
Si thin film solar cell; n-i-p structure; High efficiency; Defect density; Simulation; Optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. R. Wronski and R. W. Collins, Sol. Energy, 77, 877 (2004). [DOI: https://doi.org/10.1016/j.solener.2004.03.008]   DOI
2 K. Ding, U. Aeberhard, F. Finger, and U. Rau, J. Appl. Phys., 113, 134501 (2013). [DOI: https://doi.org/10.1063/1.4798603]   DOI
3 D. Gerlach, R. G. Wilks, D. Wippler, M. Wimmer, M. Lozac, H. R. Felix, A. Mück, M. Meier, S. Ueda, H. Yoshikawa, M. Gorgoi, K. Lips, B. Rech, M. Sumiya, J. Hupkes, K. Kobayashi, and M. Bar, Appl. Phys. Lett., 103, 023903 (2013). [DOI: https://doi.org/10.1063/1.4813448]   DOI
4 Y. Kim, S. M. Iftiquar, J. Park, J. Lee, and J. Yi, J. Ceram. Process. Res., 13, s336 (2012).
5 J. W. Shin, K. M. Park, J. E. Kim, and S. Y. Choi, Mol. Cryst. Liq. Cryst., 551, 257 (2011). [DOI: https://doi.org/10.1080/15421406.2011.601177]   DOI
6 W. Shockley and W. T. Read, Physical Review, 87, 835 (1952). [DOI: https://doi.org/10.1103/PhysRev.87.835]   DOI
7 D. E. Carlson and C. R. Wronski, Solar Cells (Elsevier Ltd., 2005). p. 217. [DOI: https://doi.org/10.1016/B978-185617457-2/50010-X]
8 S. M. Iftiquar, J. Jung, C. Shin, H. Park, J. Park, J. Jung, and J. Yi, Sol. Energ. Mater. Sol. Cells, 132, 348 (2014). [DOI: https://doi.org/10.1016/j.solmat.2014.09.011]
9 R. Stangl, J. Haschke, and C. Leendertz, Numerical Simulation of Solar Cells and Solar Cell Characterization Methods: the open-source on demand program AFORS-HET (InTech Open Access Publisher, Croatia, 2009). p. 432.
10 S. M. Iftiquar, J. Jang, H. Park, C. Shin, J. Park, J. Jung, S. Kim, and J. Yi, Phys. Status Solidi A, 211, 924 (2014). [DOI: https://doi.org/10.1002/pssa.201330291]   DOI
11 C. M. Fortmann and D. Fischer, Appl. Phys. Lett., 62, 3147 (1993). [DOI: https://doi.org/10.1063/1.109110]   DOI
12 V.V.Z. Bart, Ph. D. Principles of semiconductor devices, University of Colorado, Colorado (2007).
13 D. Das, S. M. Iftiquar, and A. K. Barua, J. Non. Cryst. Solids, 210, 148 (1997). [DOI: https://doi.org/10.1016/S0022-3093(96)00597-2]   DOI
14 S. M. Iftiquar, J. Phys. D, 31, 1630 (1998). [DOI: https://doi.org/10.1088/0022-3727/31/14/004]   DOI
15 S. M. Iftiquar, J. C. Lee, J. Lee, Y. Kim, J. Jang, Y. J. Lee, and J. Yi, J. Photonics for Energy, 3, 033098 (2013). [DOI: https://doi.org/10.1117/1.JPE.3.033098]   DOI