• Title/Summary/Keyword: p-Banach space

Search Result 97, Processing Time 0.024 seconds

ANALYTIC FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION OF FUNCTIONALS IN A GENERALIZED FRESNEL CLASS

  • Kim, Byoung Soo;Song, Teuk Seob;Yoo, Il
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.481-495
    • /
    • 2009
  • Huffman, Park and Skoug introduced various results for the $L_{p}$ analytic Fourier-Feynman transform and the convolution for functionals on classical Wiener space which belong to some Banach algebra $\mathcal{S}$ introduced by Cameron and Storvick. Also Chang, Kim and Yoo extended the above results to an abstract Wiener space for functionals in the Fresnel class $\mathcal{F}(B)$ which corresponds to $\mathcal{S}$. Moreover they introduced the $L_{p}$ analytic Fourier-Feynman transform for functionals on a product abstract Wiener space and then established the above results for functionals in the generalized Fresnel class $\mathcal{F}_{A1,A2}$ containing $\mathcal{F}(B)$. In this paper, we investigate more generalized relationships, between the Fourier-Feynman transform and the convolution product for functionals in $\mathcal{F}_{A1,A2}$, than the above results.

  • PDF

ON THE CLOSED RANGE COMPOSITION AND WEIGHTED COMPOSITION OPERATORS

  • Keshavarzi, Hamzeh;Khani-Robati, Bahram
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.217-227
    • /
    • 2020
  • Let ψ be an analytic function on 𝔻, the unit disc in the complex plane, and φ be an analytic self-map of 𝔻. Let 𝓑 be a Banach space of functions analytic on 𝔻. The weighted composition operator Wφ,ψ on 𝓑 is defined as Wφ,ψf = ψf ◦ φ, and the composition operator Cφ defined by Cφf = f ◦ φ for f ∈ 𝓑. Consider α > -1 and 1 ≤ p < ∞. In this paper, we prove that if φ ∈ H(𝔻), then Cφ has closed range on any weighted Dirichlet space 𝒟α if and only if φ(𝔻) satisfies the reverse Carleson condition. Also, we investigate the closed rangeness of weighted composition operators on the weighted Bergman space Apα.

GENERALIZED 𝛼-NONEXPANSIVE MAPPINGS IN HYPERBOLIC SPACES

  • Kim, Jong Kyu;Dashputre, Samir;Padmavati, Padmavati;Sakure, Kavita
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.449-469
    • /
    • 2022
  • This paper deals with the new iterative algorithm for approximating the fixed point of generalized 𝛼-nonexpansive mappings in a hyperbolic space. We show that the proposed iterative algorithm is faster than all of Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, Thakur and Piri iteration processes for contractive mappings in a Banach space. We also establish some weak and strong convergence theorems for generalized 𝛼-nonexpansive mappings in hyperbolic space. The examples and numerical results are provided in this paper for supporting our main results.

MEAN CONVERGENCE THEOREMS AND WEAK LAWS OF LARGE NUMBERS FOR DOUBLE ARRAYS OF RANDOM ELEMENTS IN BANACH SPACES

  • Dung, Le Van;Tien, Nguyen Duy
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.467-482
    • /
    • 2010
  • For a double array of random elements {$V_{mn};m{\geq}1,\;n{\geq}1$} in a real separable Banach space, some mean convergence theorems and weak laws of large numbers are established. For the mean convergence results, conditions are provided under which $k_{mn}^{-\frac{1}{r}}\sum{{u_m}\atop{i=1}}\sum{{u_n}\atop{i=1}}(V_{ij}-E(V_{ij}|F_{ij})){\rightarrow}0$ in $L_r$ (0 < r < 2). The weak law results provide conditions for $k_{mn}^{-\frac{1}{r}}\sum{{T_m}\atop{i=1}}\sum{{\tau}_n\atop{j=1}}(V_{ij}-E(V_{ij}|F_{ij})){\rightarrow}0$ in probability where {$T_m;m\;{\geq}1$} and {${\tau}_n;n\;{\geq}1$} are sequences of positive integer-valued random variables, {$k_{mn};m{{\geq}}1,\;n{\geq}1$} is an array of positive integers. The sharpness of the results is illustrated by examples.

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.

APPROXIMATING COMMON FIXED POINTS OF ONE-STEP ITERATIVE SCHEME WITH ERROR FOR NON-SELF ASYMPTOTICALLY NONEXPANSIVE IN THE INTERMEDIATE SENSE MAPPINGS

  • Saluja, Gurucharan Singh;Nashine, Hemant Kumar
    • East Asian mathematical journal
    • /
    • v.26 no.3
    • /
    • pp.429-440
    • /
    • 2010
  • In this paper, we study a new one-step iterative scheme with error for approximating common fixed points of non-self asymptotically nonexpansive in the intermediate sense mappings in uniformly convex Banach spaces. Also we have proved weak and strong convergence theorems for above said scheme. The results obtained in this paper extend and improve the recent ones, announced by Zhou et al. [27] and many others.

New Two-Weight Imbedding Inequalities for $\mathcal{A}$-Harmonic Tensors

  • Gao, Hongya;Chen, Yanmin;Chu, Yuming
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.105-118
    • /
    • 2007
  • In this paper, we first define a new kind of two-weight-$A_r^{{\lambda}_3}({\lambda}_1,{\lambda}_2,{\Omega})$-weight, and then prove the imbedding inequalities for $\mathcal{A}$-harmonic tensors. These results can be used to study the weighted norms of the homotopy operator T from the Banach space $L^p(D,{\bigwedge}^l)$ to the Sobolev space $W^{1,p}(D,{\bigwedge}^{l-1})$, $l=1,2,{\cdots},n$, and to establish the basic weighted $L^p$-estimates for $\mathcal{A}$-harmonic tensors.

  • PDF

APPROXIMATION OF COMMON FIXED POINTS OF NON-SELF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Kim, Jong-Kyu;Dashputre, Samir;Diwan, S.D.
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.179-196
    • /
    • 2009
  • Let E be a uniformly convex Banach space and K a nonempty closed convex subset which is also a nonexpansive retract of E. For i = 1, 2, 3, let $T_i:K{\rightarrow}E$ be an asymptotically nonexpansive mappings with sequence ${\{k_n^{(i)}\}\subset[1,{\infty})$ such that $\sum_{n-1}^{\infty}(k_n^{(i)}-1)$ < ${\infty},\;k_{n}^{(i)}{\rightarrow}1$, as $n{\rightarrow}\infty$ and F(T)=$\bigcap_{i=3}^3F(T_i){\neq}{\phi}$ (the set of all common xed points of $T_i$, i = 1, 2, 3). Let {$a_n$},{$b_n$} and {$c_n$} are three real sequences in [0, 1] such that $\in{\leq}\;a_n,\;b_n,\;c_n\;{\leq}\;1-\in$ for $n{\in}N$ and some ${\in}{\geq}0$. Starting with arbitrary $x_1{\in}K$, define sequence {$x_n$} by setting {$$x_{n+1}=P((1-a_n)x_n+a_nT_1(PT_1)^{n-1}y_n)$$ $$y_n=P((1-b_n)x_n+a_nT_2(PT_2)^{n-1}z_n)$$ $$z_n=P((1-c_n)x_n+c_nT_3(PT_3)^{n-1}x_n)$$. Assume that one of the following conditions holds: (1) E satises the Opial property, (2) E has Frechet dierentiable norm, (3) $E^*$ has Kedec -Klee property, where $E^*$ is dual of E. Then sequence {$x_n$} converges weakly to some p${\in}$F(T).

CHANGE OF SCALE FORMULAS FOR CONDITIONAL WIENER INTEGRALS AS INTEGRAL TRANSFORMS OVER WIENER PATHS IN ABSTRACT WIENER SPACE

  • Cho, Dong-Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.91-109
    • /
    • 2007
  • In this paper, we derive a change of scale formula for conditional Wiener integrals, as integral transforms, of possibly unbounded functions over Wiener paths in abstract Wiener space. In fact, we derive the change of scale formula for the product of the functions in a Banach algebra which is equivalent to both the Fresnel class and the space of measures of bounded variation over a real separable Hilbert space, and the $L_p-type$cylinder functions over Wiener paths in abstract Wiener space. As an application of the result, we obtain a change of scale formula for the conditional analytic Fourier-Feynman transform of the product of the functions.

STRONG CONVERGENCE OF PATHS FOR NONEXPANSIVE SEMIGROUPS IN BANACH SPACES

  • Kang, Shin Min;Cho, Sun Young;Kwun, Young Chel
    • Korean Journal of Mathematics
    • /
    • v.19 no.3
    • /
    • pp.279-289
    • /
    • 2011
  • Let E be a uniformly convex Banach space with a uniformly Gateaux differentiable norm, C be a nonempty closed convex subset of E and f : $C{\rightarrow}C$ be a fixed bounded continuous strong pseudocontraction with the coefficient ${\alpha}{\in}(0,1)$. Let $\{{\lambda}_t\}_{0<t<1}$ be a net of positive real numbers such that ${\lim}_{t{\rightarrow}0}{\lambda}_t={\infty}$ and S = {$T(s)$ : $0{\leq}s$ < ${\infty}$} be a nonexpansive semigroup on C such that $F(S){\neq}{\emptyset}$, where F(S) denotes the set of fixed points of the semigroup. Then sequence {$x_t$} defined by $x_t=tf(x_t)+(1-t)\frac{1}{{\lambda}_t}{\int_{0}}^{{\lambda}_t}T(s)x{_t}ds$ converges strongly as $t{\rightarrow}0$ to $\bar{x}{\in}F(S)$, which solves the following variational inequality ${\langle}(f-I)\bar{x},\;p-\bar{x}{\rangle}{\leq}0$ for all $p{\in}F(S)$.