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ANALYTIC FOURIER-FEYNMAN TRANSFORM AND
CONVOLUTION OF FUNCTIONALS IN A

GENERALIZED FRESNEL CLASS

Byoung Soo Kim*, Teuk Seob Song**, and Il Yoo***

Abstract. Huffman, Park and Skoug introduced various results
for the Lp analytic Fourier-Feynman transform and the convolution
for functionals on classical Wiener space which belong to some Ba-
nach algebra S introduced by Cameron and Storvick. Also Chang,
Kim and Yoo extended the above results to an abstract Wiener
space for functionals in the Fresnel class F(B) which corresponds
to S. Moreover they introduced the Lp analytic Fourier-Feynman
transform for functionals on a product abstract Wiener space and
then established the above results for functionals in the generalized
Fresnel class FA1,A2 containing F(B).

In this paper, we investigate more generalized relationships, be-
tween the Fourier-Feynman transform and the convolution product
for functionals in FA1,A2 , than the above results.

1. Introduction

The concept of an L1 analytic Fourier-Feynman transform for func-
tionals on classical Wiener space (C0[0, T ],m) was introduced by Brue
in [2]. In [3], Cameron and Storvick introduced an L2 analytic Fourier-
Feynman transform on classical Wiener space. In [13], Johnson and
Skoug developed an Lp analytic Fourier-Feynman transform theory for
1 ≤ p ≤ 2 that extended the results in [2,3] and gave various relation-
ships between the L1 and L2 theories. Also Huffman, Park and Skoug
defined a convolution product for functionals on classical Wiener space
and they obtained various results on the Fourier-Feynman transform and
the convolution product [10,11,12]. In [19], Park, Skoug and Storvick
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investigated various relationships among the first variation, the con-
volution product and the Fourier-Feynman transform for functionals on
classical Wiener space which belong to the Banach algebra S introduced
by Cameron and Storvick in [4].

The concept of abstract Wiener space (H,B, ν) was introduced by
Gross in [9]. Also Lee [17,18] established the Fourier-Wiener trans-
form (Fourier-Feynman transform) theory on abstract Wiener space and
applied this transform to differential equations on infinite dimensional
spaces. Also Chang, Kim and Yoo [7] obtained the relationships among
the Fourier-Feynman transform, the convolution and the first variation
for functionals in the Fresnel class F(B) which corresponds to the Ba-
nach algebra S. Moreover they [6] introduced an Lp analytic Fourier-
Feynman transform for functionals on a product abstract Wiener space
and established the relationships between the Fourier-Feynman trans-
form and the convolution for functionals in a generalized Fresnel class
FA1,A2 containing F(B) introduced by Kallianpur and Bromley [14].

In this paper, we shall continue to study the Lp analytic Fourier-
Feynman transform and convolution for functionals on abstract Wiener
space [6]. In particular, we investigate more generalized relationships,
between the Fourier-Feynman transform and the convolution product
for functionals in the generalized Fresnel class FA1,A2 , than those in [6].

2. Preliminaries

Let (H,B, ν) be an abstract Wiener space and let {ej} be a complete
orthonormal system in H such that the ej ’s are in B∗, the dual of B.
For each h ∈ H and x ∈ B, we define a stochastic inner product (h, x)∼

as follows:

(2.1) (h, x)∼ =

 lim
n→∞

n∑
j=1

〈h, ej〉(x, ej), if the limit exists

0, otherwise,

where (·, ·) denotes the natural dual pairing between B and B∗. It is well
known [14,15] that for each h(6= 0) in H, (h, ·)∼ is a Gaussian random
variable on B with mean zero and variance |h|2, that is,

(2.2)
∫

B
exp{i(h, x)∼} dν(x) = exp

{
−1

2
|h|2

}
.
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A subset E of a product abstract Wiener space B2 is said to be
scale-invariant measurable provided {(αx1, βx2) : (x1, x2) ∈ E} is ab-
stract Wiener measurable for every α > 0 and β > 0, and a scale-
invariant measurable set N is said to be scale-invariant null provided
(ν × ν)({(αx1, βx2) : (x1, x2) ∈ N}) = 0 for every α > 0 and β >
0. A property that holds except on a scale-invariant null set is said
to hold scale-invariant almost everywhere (s-a.e.). If two functionals
F and G are equals s-a.e., we write F ≈ G. For more details, see
[6,7,9,14,15,16,21].

Let C denote the complex numbers and let

Ω = {~λ = (λ1, λ2) ∈ C2 : Re λk > 0 for k = 1, 2}
and

Ω̃ = {~λ = (λ1, λ2) ∈ C2 : λk 6= 0,Re λk ≥ 0 for k = 1, 2}.
Let F be a complex-valued function on B2 such that the integral

JF (λ1, λ2) =
∫

B2

F (λ−1/2
1 x1, λ

−1/2
2 x2) d(ν × ν)(x1, x2)

exists as a finite number for all real numbers λ1 > 0 and λ2 > 0. If
there exists a function J∗F (λ1, λ2) analytic on Ω such that J∗F (λ1, λ2) =
JF (λ1, λ2) for all λ1 > 0 and λ2 > 0, then J∗F (λ1, λ2) is defined to be
the analytic Wiener integral of F over B2 with parameter ~λ = (λ1, λ2),
and for ~λ ∈ Ω we write∫ anw~λ

B2

F (x1, x2) d(ν × ν)(x1, x2) = J∗F (λ1, λ2).

Let q1 and q2 be nonzero real numbers and F be a functional on B2

such that
∫ anw~λ

B2 F (x1, x2) d(ν × ν)(x1, x2) exists for all ~λ ∈ Ω. If the
following limit exists, then we call it the analytic Feynman integral of F
over B2 with parameter ~q = (q1, q2) and we write∫ anf~q

B2

F (x1, x2) d(ν × ν)(x1, x2)

= lim
~λ→−i~q

∫ anw~λ

B2

F (x1, x2) d(ν × ν)(x1, x2),

where ~λ = (λ1, λ2) approaches −i~q = (−iq1,−iq2) through Ω.

Notation 2.1. (i) For ~λ = (λ1, λ2) ∈ Ω and (y1, y2) ∈ B2, let

(2.3) (T~λ
(F ))(y1, y2) =

∫ anw~λ

B2

F (x1 + y1, x2 + y2) d(ν × ν)(x1, x2).
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(ii) Let 1 < p < ∞ and let {Gn} and G be scale-invariant measurable
functionals such that, for each α > 0 and β > 0,

(2.4) lim
n→∞

∫
B2

|Gn(αx1, βx2)−G(αx1, βx2)|p
′
d(ν × ν)(x1, x2) = 0,

where p and p′ are related by 1
p + 1

p′ = 1. Then we write

(2.5) l. i.m.
n→∞

(wp′
s )(Gn) ≈ G

and call G the scale-invariant limit in the mean of order p′. A simi-
lar definition is understood when n is replaced by the continuously

varying parameter ~λ.

Definition 2.2. Let q1 and q2 be nonzero real numbers. For 1 <

p < ∞, we define the Lp analytic Fourier-Feynman transform T
(p)
~q (F )

of F on B2 by the formula (~λ ∈ Ω)

(2.6) (T (p)
~q (F ))(y1, y2) = l. i.m.

~λ→−i~q
(wp′

s )(T~λ
(F ))(y1, y2),

whenever this limit exists. We define the L1 analytic Fourier-Feynman
transform T

(1)
~q (F ) of F by (~λ ∈ Ω)

(2.7) (T (1)
~q (F ))(y1, y2) = lim

~λ→−i~q
(T~λ

(F ))(y1, y2),

for s-a.e. (y1, y2) ∈ B2.

Let M(H) denote the space of complex-valued countably additive
Borel measures on H. Under the total variation norm ‖ · ‖ and with
convolution as multiplication, M(H) is a commutative Banach algebra
with identity [1].

Now we state the generalized Fresnel class FA1,A2 introduced by
Kallianpur and Bromley [14]. Let A1 and A2 be bounded, non-negative
self-adjoint operators on H. Let FA1,A2 be the space of all s-equivalence
classes of functionals F on B2 which have the form

(2.8) F (x1, x2) =
∫

H
exp

{
i

2∑
j=1

(A1/2
j h, xj)∼

}
dσ(h)

for some complex-valued countably additive Borel measure σ on H.
As is customary, we will identify a functional with its s-equivalence

class and think of FA1,A2 as a collection of functionals on B2 rather than
as a collection of equivalence classes. Moreover the map σ 7→ [F ] defined
by (2.8) sets up an algebra isomorphism between M(H) and FA1,A2 if
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the range of A1 + A2 is dense in H. In this case, FA1,A2 becomes a
Banach algebra under the norm ‖F‖ = ‖σ‖ [14].

Remark 2.3. Let F(B) denote the Fresnel class of functions F on B
of the form

(2.9) F (x) =
∫

H
exp{i(h, x)∼} dσ(h)

for some σ ∈ M(H). If A1 is the identity operator on H and A2 = 0,
then FA1,A2 is essentially the Fresnel class F(B).

The following theorems are well known results in [6] which play an
important role in this paper. We now state them without proof. In [6],
the authors restricted to the case where 1 ≤ p ≤ 2. But concerning
to the functionals in FA1,A2 , it is easy to see that the results can be
extended to the case where 1 ≤ p < ∞.

Theorem 2.4. Let F ∈ FA1,A2 be given by (2.8) with σ ∈ M(H) and
let 1 ≤ p < ∞. Then, for all ~q = (q1, q2) with nonzero real numbers q1

and q2, the analytic Fourier-Feynman transform T
(p)
~q (F ) exists, belongs

to FA1,A2 and is given by the formula

(2.10) (T (p)
~q (F ))(y1, y2) =

∫
H

exp
{

i

2∑
j=1

(A1/2
j h, yj)∼

}
dσ̂(h)

for s-a.e. (y1, y2) ∈ B2 where σ̂ ∈ M(H) is defined by

(2.11) σ̂(E) =
∫

E
exp

{
−

2∑
j=1

i

2qj
|A1/2

j h|2
}

dσ(h)

for E ∈ B(H).

Remark 2.5. (i) We adopt the convention 1
±∞ = 0 throughout

this paper. Thus if q1 = q2 = ±∞, then T
(p)
~q (F ) is F itself for

~q = (q1, q2).
(ii) For nonzero real numbers q1 and q2, we have

(T (1)
~q (F ))(y1, y2) =

∫ anf~q

B2

F (x1 + y1, x2 + y2) d(ν × ν)(x1, x2)

where ~q = (q1, q2) and (y1, y2) ∈ B2. In particular, if F ∈ FA1,A2 ,
then

(T (p)
~q (F ))(0, 0) =

∫ anf~q

B2

F (x1, x2) d(ν × ν)(x1, x2)
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for 1 ≤ p < ∞.

Definition 2.6. Let F and G be functionals on B2. For ~q = (q1, q2)
with nonzero real numbers q1 and q2, we define their convolution product
(if it exists) by

(F ∗G)~q(y1, y2)(2.12)

=
∫ anf~q

B2

F
(y1 + x1√

2
,
y2 + x2√

2

)
G

(y1 − x1√
2

,
y2 − x2√

2

)
d(ν × ν)(x1, x2).

Theorem 2.7. Let F and G be elements of FA1,A2 with corresponding
finite Borel measures σ and ρ in M(H) respectively. Then, for all ~q =
(q1, q2) with nonzero real numbers q1 and q2, the convolution product
(F ∗G)~q exists, belongs to FA1,A2 and is given by the formula

(2.13) (F ∗G)~q(y1, y2) =
∫

H2

exp
{

i
2∑

j=1

(A1/2
j h, yj)∼

}
dη(h)

for s-a.e. (y1, y2) ∈ B2 where η = µ ◦ φ−1 ∈ M(H) is defined by

(2.14) µ(E) =
∫

E
exp

{
−

2∑
j=1

i

4qj
|A1/2

j (h− k)|2
}

dσ(h) dρ(k)

for E ∈ B(H) and φ : H2 → H is the Borel measurable function defined
by φ(h, k) = 1√

2
(h + k).

3. Fourier-Feynman transform and convolution for function-
als in a generalized Fresnel class

In this section, we investigate more generalized relationships, between
the Fourier-Feynman transform and the convolution product for func-
tionals in the generalized Fresnel class FA1,A2 , than those in [6].

Theorem 3.1. Let F ∈ FA1,A2 be given by (2.8) with σ ∈ M(H)
and let 1 ≤ p < ∞. Let qk1 and qk2 (k = 1, 2) be in R#−{0} where R#

is the set of extended real numbers. Then

T
(p)
~q2

(T (p)
~q1

(F )) ≈ T
(p)
~q (F )(3.1)

where ~qk = (qk1, qk2), ~q = (q1, q2), and q1 and q2 are extended real
numbers such that 1

q1k
+ 1

q2k
= 1

qk
for k = 1, 2.
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Proof. As mentioned in Theorem 2.4, T
(p)
~q1

(F ) belongs to FA1,A2 and
is given by (2.10) with ~q replaced by ~q1. Applying Theorem 2.4 to the
expression of T

(p)
~q1

(F ) and using (2.11), we obtain

T~q2
(T (p)

~q1
(F ))(y1, y2)(3.2)

=
∫

H
exp

{ 2∑
j=1

[
i(A1/2

j h, yj)∼ −
i

2q1j
|A1/2

j h|2 − i

2q2j
|A1/2

j h|2
]}

dσ(h)

=
∫

H
exp

{ 2∑
j=1

[
i(A1/2

j h, yj)∼ −
i

2qj
|A1/2

j h|2
]}

dσ(h)

for s-a.e. (y1, y2) ∈ B2 as desired.

If ~q2 = −~q1 in (3.1), then we obtain the following inverse transform
theorem.

Corollary 3.2. (Theorem 3.2 in [6]) Let F be given as in Theorem
3.1. Then for all nonzero real numbers q1 and q2,

T
(p)
−~q (T (p)

~q (F )) ≈ F(3.3)

for 1 ≤ p < ∞ where ~q = (q1, q2).

Moreover, if n is a natural number, then we obtain the following
result.

Corollary 3.3. Let F ∈ FA1,A2 be given as in Theorem 3.1 and let

1 ≤ p < ∞. Let qk1 and qk2 (k = 1, · · · , n) be in R# − {0}. Then

T
(p)
~qn

(T (p)
~qn−1

(· · · (T (p)
~q1

(F )))) ≈ T
(p)
~q (F )(3.4)

where ~qk = (qk1, qk2), ~q = (q1, q2), and q1 and q2 are extended real
numbers such that 1

q1k
+ 1

q2k
+ · · ·+ 1

qnk
= 1

qk
for k = 1, 2.

Cameron and Storvick [5] introduced a new translation theorem for
the analytic Feynman integral on classical Wiener space. Now we give
a simple proof of a product abstract Wiener space version of the trans-
lation theorem.
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Theorem 3.4. Let F ∈ FA1,A2 be given by (2.8) and let w ∈ H.
Then, for all ~q = (q1, q2) with non-zero real numbers q1 and q2,∫ anf~q

B2

F (x1 +
1
q1

A
1/2
1 w, x2 +

1
q2

A
1/2
2 w) d(ν × ν)(x1, x2)

= exp
{ 2∑

j=1

i

2qj
|A1/2

j w|2
}∫ anf~q

B2

F (x1, x2)

exp
{
−i

2∑
j=1

(A1/2
j w, xj)∼

}
d(ν × ν)(x1, x2).

Proof. Let

G(x1, x2) = F (x1, x2) exp
{
−i

2∑
j=1

(A1/2
j w, xj)∼

}
.

Then, by (2.8), we have

G(x1, x2) =
∫

H
exp

{
i

2∑
j=1

(A1/2
j (h− w), xj)∼

}
dσ(h)

=
∫

H
exp

{
i

2∑
j=1

(A1/2
j k, xj)∼

}
dσ̂(k)

where σ̂(E) = σ(E + w) for E ∈ B(H). Using Theorem 2.4, we obtain

(T (1)
~q (G))(0, 0)(3.5)

=
∫

H
exp

{
−

2∑
j=1

i

2qj
|A1/2

j (h− w)|2
}

dσ(h)

= exp
{
−

2∑
j=1

i

2qj
|A1/2

j w|2
}

∫
H

exp
{ 2∑

j=1

[ i

qj
(A1/2

j h, A
1/2
j w)− i

2qj
|A1/2

j h|2
}

dσ(h)

= exp
{
−

2∑
j=1

i

2qj
|A1/2

j w|2
}

(T (1)
~q (F ))

( 1
q1

A
1/2
1 w,

1
q2

A
1/2
2 w

)
.

By Remark 2.5, we have the result.
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Corollary 3.5. Under the hypothesis of Theorem 3.4, we have∫ anf~q

B2

F (x1, x2) d(ν × ν)(x1, x2)

= exp
{ 2∑

j=1

i

2qj
|A1/2

j w|2
}∫ anf~q

B2

F (x1 +
1
q1

A
1/2
1 w, x2 +

1
q2

A
1/2
2 w)

exp
{

i
2∑

j=1

(A1/2
j w, xj)∼

}
d(ν × ν)(x1, x2).

Also we easily obtain the following corollaries as special cases of The-
orem 3.4.

Corollary 3.6. (Theorem 3.9 in [22]) Let F ∈ FA1,A2 be given by
(2.8) and let w ∈ H. Then, for all non-zero real number q,∫ anfq

B2

F ((x1, x2) + (A1/2
1 w,A

1/2
2 w)) d(ν × ν)(x1, x2)

= exp
{ iq

2

2∑
j=1

〈Ajw,w〉
}∫ anfq

B2

F (x1, x2)

exp
{
−iq

2∑
j=1

(A1/2
j w, xj)∼

}
d(ν × ν)(x1, x2).

Corollary 3.7. Let F ∈ F(B) be given by (2.9) and let w ∈ H.
Then, for all non-zero real number q,∫ anfq

B
F (x+w) dν(x) = exp

{ iq

2
|w|2

}∫ anfq

B
F (x) exp{−iq(w, x)∼} dν(x).

The following theorem shows the existence for the analytic Fourier-
Feynman transform of the convolution product.

Theorem 3.8. Let F and G be elements of FA1,A2 with corresponding
finite Borel measures σ and ρ in M(H) respectively. Let qk1 and qk2

(k = 1, 2) be in R# − {0}. Then

(T (p)
~q1

(F ∗G)~q2
)(y1, y2)(3.6)

=
∫

H2

exp
{ 2∑

j=1

[ i√
2
(A1/2

j (h + k), yj)∼ −
i

4q1j
|A1/2

j (h + k)|2

− i

4q2j
|A1/2

j (h− k)|2
]}

dσ(h) dρ(k)



490 Byoung Soo Kim, Teuk Seob Song, and Il Yoo

for s-a.e. (y1, y2) in B2 where ~qk = (qk1, qk2) for k = 1, 2 and 1 ≤ p < ∞.

Proof. As mentioned in Theorem 2.7, (F ∗G)~q2
belongs to FA1,A2 and

is given by (2.13) with ~q replaced by ~q2. Applying Theorem 2.4 to the
expression of (F ∗G)~q2

and using (2.14), we have

(3.7) (T~q1
(F ∗G)~q2

)(y1, y2) =
∫

H
exp

{
i

2∑
j=1

(A1/2
j h, yj)∼

}
dη̂(h)

where η̂ is given by (2.11) with σ replaced by η. Hence by the expressions
(2.11) and (2.14) we have (3.6) as desired.

Taking ~q1 = ~q2 = ~q in Theorem 3.8 and using the expression (2.10),
we have the following corollary.

Corollary 3.9. (Theorem 3.4 in [6]) Let F and G be given as in
Theorem 3.8. Then for all ~q = (q1, q2) with nonzero real numbers q1 and
q2,

(3.8) T
(p)
~q ((F ∗G)~q)(y1, y2) = T

(p)
~q (F )

( y1√
2
,

y2√
2

)
T

(p)
~q (G)

( y1√
2
,

y2√
2

)
for s-a.e. (y1, y2) in B2 and 1 ≤ p < ∞.

Corollary 3.10. Let F be given as in Theorem 3.1. Then for all
nonzero real numbers qk1 and qk2 (k = 1, 2),

T
(p)
~q1

((F ∗ 1)~q2
)(y1, y2) = T

(p)

~q′
(F )

( y1√
2
,

y2√
2

)
for s-a.e. (y1, y2) in B2 where ~qk = (qk1, qk2), ~q′ = (q

′
1, q

′
2),

2

q
′
k

= 1
q1k

+ 1
q2k

for k = 1, 2 and 1 ≤ p < ∞.

Proof. For a probability measure ρ whose support is {0} ⊂ H,

G(x1, x2) =
∫

H
exp

{
i

2∑
j=1

(A1/2
j h, yj)∼

}
dρ(h) = 1.

Hence by Theorems 3.8 and 2.4, we have

T
(p)
~q1

((F ∗ 1)~q2
)(y1, y2)

=
∫

H
exp

{ 2∑
j=1

[ i√
2
(A1/2

j h, yj)∼ −
i

4q1j
|A1/2

j h|2 − i

4q2j
|A1/2

j h|2
]}

dσ(h)

=T
(p)

~q′
(F )

( y1√
2
,

y2√
2

)
as desired.
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In the next theorem, we will show the existence for the convolution
product of the analytic Fourier-Feynman transforms.

Theorem 3.11. Let F and G be given as in Theorem 3.8. Let qk1

and qk2 (k = 1, 2) be in R#−{0}. Then for all nonzero real numbers q1

and q2,

(T (p)
~q1

(F ) ∗ T
(p)
~q2

(G))~q(y1, y2)(3.9)

=
∫

H2

exp
{ 2∑

j=1

[ i√
2
(A1/2

j (h + k), yj)∼ −
i

2q1j
|A1/2

j h|2

− i

2q2j
|A1/2

j k|2 − i

4qj
|A1/2

j (h− k)|2
]}

dσ(h) dρ(k)

for s-a.e. (y1, y2) in B2 where ~qk = (qk1, qk2), ~q = (q1, q2) for k = 1, 2
and 1 ≤ p < ∞.

Proof. As mentioned in Theorem 2.4, T
(p)
~q1

(F ) and T
(p)
~q2

(G) belong to
FA1,A2 and are given by (2.10) with corresponding measures σ̂ and ρ̂,
respectively. Applying Theorem 2.7 to the expressions of T

(p)
~q1

(F ) and

T
(p)
~q2

(G), we obtain

(T (p)
~q1

(F ) ∗ T
(p)
~q2

(G))~q(y1, y2)

=
∫

H2

exp
{ 2∑

j=1

[
i(A1/2

j h, yj)∼ −
i

4qj
|A1/2

j (h− k)|2
]}

dσ̂(h) dρ̂(k).

(3.10)

Using the expression (2.11) for σ̂ and ρ̂, we obtain (3.9).

Corollary 3.12. (Theorem 3.5 in [6]) Let F and G be given as in
Theorem 3.8. Then for all ~q = (q1, q2) with nonzero real numbers q1 and
q2,

(T (p)
~q (F ) ∗ T

(p)
~q (G))−~q(y1, y2)(3.11)

= T
(p)
~q

(
F

( ·√
2
,
·√
2

)
G

( ·√
2
,
·√
2

))
(y1, y2)

for s-a.e. (y1, y2) in B2 and 1 ≤ p < ∞.
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Proof. From the expression (3.9), we have

(T (p)
~q (F ) ∗ T

(p)
~q (G))−~q(y1, y2)

=
∫

H2

exp
{ 2∑

j=1

[ i√
2
(A1/2

j (h + k), yj)∼ −
i

4qj
|A1/2

j (h + k)|2
]}

dσ(h) dρ(k).

On the other hand, FG belongs to FA1,A2 and has the form

F
( x1√

2
,

x2√
2

)
G

( x1√
2
,

x2√
2

)
=

∫
H2

exp
{ i√

2

2∑
j=1

(A1/2
j (h + k), yj)∼

}
dσ(h) dρ(k).

By applying Theorem 2.4 it is easy to see that

T
(p)
~q

(
F

( ·√
2
,
·√
2

)
G

( ·√
2
,
·√
2

))
(y1, y2)

also has the same expression as (T (p)
~q (F ) ∗ T

(p)
~q (G))−~q(y1, y2).

Theorem 3.13. Let F and G be given as in Theorem 3.8. Let qk1

and qk2 (k = 1, 2) be in R#−{0}. Then for all ~q = (q1, q2) with nonzero
real numbers q1 and q2,

T
(p)
~q (T (p)

~q1
(F ) ∗ T

(p)
~q2

(G))~q)(y1, y2)(3.12)

= T
(p)

~q1
′ (F )

( y1√
2
,

y2√
2

)
T

(p)

~q2
′ (G)

( y1√
2
,

y2√
2

)
for s-a.e. (y1, y2) in B2 where ~q

′
1 = (q

′
11, q

′
12),

~q
′
2 = (q

′
21, q

′
22) and q

′
1k and

q
′
2k are extended real numbers such that 1

q
′
1k

= 1
q1k

+ 1
qk

and 1

q
′
2k

= 1
q2k

+ 1
qk

for k = 1, 2 and 1 ≤ p < ∞. Also both sides of the above expression are
given by ∫

H2

exp
{ 2∑

j=1

[ i√
2
(A1/2

j (h + k), yj)∼(3.13)

− i

2q
′
1j

|A1/2
j h|2 − i

2q
′
2j

|A1/2
j k|2

]}
dσ(h) dρ(k).

Proof. A simple calculation together with Theorem 2.4 and 3.11 shows
that the left hand side of (3.12) is expressed as (3.13). On the other
hand, using Theorem 2.4, the right hand side of (3.12) is also expressed
as (3.13).
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Corollary 3.14. Equation (3.8) in Corollary 3.9 holds.

Proof. Using Theorem 3.13 together with (i) of Remark 2.5, we can
easily obtain our result.

Theorem 3.15. Let F,G, σ, ρ, ~q1 and ~q2 be given as in Theorem 3.8.
Then for all ~q = (q1, q2) with nonzero real numbers q1 and q2, the fol-
lowing Parseval’s relation

T
(p)
−~q (T (p)

~q (T (p)
~q1

(F ) ∗ T
(p)
~q2

(G))~q)(0, 0)(3.14)

= T
(p)
~q

(
T

(p)
~q1

(F )
( ·√

2
,
·√
2

)
T

(p)
~q2

(G)
(
− ·√

2
,− ·√

2

))
(0, 0)

holds for 1 ≤ p < ∞.

Proof. By Corollary 3.2 and Theorem 3.11, the left hand side of (3.14)
is expressed as ∫

H2

exp
{ 2∑

j=1

[
− i

2q1j
|A1/2

j h|2 − i

2q2j
|A1/2

j k|2(3.15)

− i

4qj
|A1/2

j (h− k)|2
]}

dσ(h) dρ(k).

On the other hand, we have that by Theorem 2.4,

T
(p)
~q1

(F )
( y1√

2
,

y2√
2

)
T

(p)
~q2

(G)
(
− y1√

2
,− y2√

2

)
(3.16)

=
∫

H2

exp
{ 2∑

j=1

[ i√
2
(A1/2

j (h− k), yj)∼

− i

2q1j
|A1/2

j h|2 − i

2q2j
|A1/2

j k|2
]}

dσ(h) dρ(k)

and belongs to FA1,A2 . By applying Theorem 2.4 once more to the above
expression, we have that the Fourier-Feynman transform of (3.16) is also
expressed as (3.15).

Also we can express (3.14) alternately as∫ anf−~q

B2

(T (p)
~q (T (p)

~q1
(F ) ∗ T

(p)
~q2

(G))~q)(x1, x2) d(ν × ν)(x1, x2)(3.17)

=
∫ anf~q

B2

T
(p)
~q1

(F )
( x1√

2
,

x2√
2

)
T

(p)
~q2

(G)
(
− x1√

2
,− x2√

2

)
d(ν × ν)(x1, x2).
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Corollary 3.16. (Theorem 3.6 in [6]) Let F and G be given as in
Theorem 3.8. Then for all ~q = (q1, q2) with nonzero real numbers q1 and
q2, the Parseval’s relation∫ anf−~q

B2

(T (p)
~q (F ))

( x1√
2
,

x2√
2

)
(T (p)

~q (G))
( x1√

2
,

x2√
2

)
d(ν × ν)(x1, x2)(3.18)

=
∫ anf~q

B2

F
( x1√

2
,

x2√
2

)
G

(
− x1√

2
,− x2√

2

)
d(ν × ν)(x1, x2)

holds for 1 ≤ p < ∞.
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