References
- R.R. Bruck, A simple proof of the mean ergodic theorem for nonlinear contrac- tions in Banach spaces, Israel J. Math. 32 (1979), 107-116. https://doi.org/10.1007/BF02764907
- F.E. Brwoder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA 54 (1965), 1041-1044.
- F.E. Browder, Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Ration. Mech. Anal. 24 (1967), 82-90.
- R. Chen, P.K. Lin and Y. Song, An approximation method for strictly pseudo- contractive mappings, Nonlinear Anal. 64 (2006), 2527-2535. https://doi.org/10.1016/j.na.2005.08.031
- R. Chen and Y. Song, Convergence to common fixed point of nonexpansive semigroups, J. Comput. Appl. Math. 200 (2007), 566-575. https://doi.org/10.1016/j.cam.2006.01.009
- K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365- 374. https://doi.org/10.1007/BF01171148
- A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000), 46-55. https://doi.org/10.1006/jmaa.1999.6615
- S. Plubtieng and R. Punpaeng, Fixed point solutions of variational inequalities for nonexpansive semigroups in Hilbert spaces, Math. Comput. Modelling 48 (2008), 279-286.
- X. Qin and Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007), 415-424. https://doi.org/10.1016/j.jmaa.2006.06.067
- S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
- T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83. https://doi.org/10.1006/jmaa.1997.5398
- N. Shioji and W. Takahashi, Strong convergence theorems for asymptotically nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 34 (1998), 87-99. https://doi.org/10.1016/S0362-546X(97)00682-2
- W. Takahashi, Nonlinear Functional Analysis, Fixed Point Theory and Its Applications, Yokohama Publishers Inc., Yokohama, 2000.
- H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), 279-291. https://doi.org/10.1016/j.jmaa.2004.04.059
Cited by
- A HYBRID METHOD FOR A SYSTEM INVOLVING EQUILIBRIUM PROBLEMS, VARIATIONAL INEQUALITIES AND NONEXPANSIVE SEMIGROUP vol.23, pp.3, 2011, https://doi.org/10.11568/kjm.2015.23.3.457