DOI QR코드

DOI QR Code

STRONG CONVERGENCE OF PATHS FOR NONEXPANSIVE SEMIGROUPS IN BANACH SPACES

  • Received : 2011.07.14
  • Accepted : 2011.08.31
  • Published : 2011.09.30

Abstract

Let E be a uniformly convex Banach space with a uniformly Gateaux differentiable norm, C be a nonempty closed convex subset of E and f : $C{\rightarrow}C$ be a fixed bounded continuous strong pseudocontraction with the coefficient ${\alpha}{\in}(0,1)$. Let $\{{\lambda}_t\}_{0<t<1}$ be a net of positive real numbers such that ${\lim}_{t{\rightarrow}0}{\lambda}_t={\infty}$ and S = {$T(s)$ : $0{\leq}s$ < ${\infty}$} be a nonexpansive semigroup on C such that $F(S){\neq}{\emptyset}$, where F(S) denotes the set of fixed points of the semigroup. Then sequence {$x_t$} defined by $x_t=tf(x_t)+(1-t)\frac{1}{{\lambda}_t}{\int_{0}}^{{\lambda}_t}T(s)x{_t}ds$ converges strongly as $t{\rightarrow}0$ to $\bar{x}{\in}F(S)$, which solves the following variational inequality ${\langle}(f-I)\bar{x},\;p-\bar{x}{\rangle}{\leq}0$ for all $p{\in}F(S)$.

Keywords

References

  1. R.R. Bruck, A simple proof of the mean ergodic theorem for nonlinear contrac- tions in Banach spaces, Israel J. Math. 32 (1979), 107-116. https://doi.org/10.1007/BF02764907
  2. F.E. Brwoder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA 54 (1965), 1041-1044.
  3. F.E. Browder, Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Ration. Mech. Anal. 24 (1967), 82-90.
  4. R. Chen, P.K. Lin and Y. Song, An approximation method for strictly pseudo- contractive mappings, Nonlinear Anal. 64 (2006), 2527-2535. https://doi.org/10.1016/j.na.2005.08.031
  5. R. Chen and Y. Song, Convergence to common fixed point of nonexpansive semigroups, J. Comput. Appl. Math. 200 (2007), 566-575. https://doi.org/10.1016/j.cam.2006.01.009
  6. K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365- 374. https://doi.org/10.1007/BF01171148
  7. A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000), 46-55. https://doi.org/10.1006/jmaa.1999.6615
  8. S. Plubtieng and R. Punpaeng, Fixed point solutions of variational inequalities for nonexpansive semigroups in Hilbert spaces, Math. Comput. Modelling 48 (2008), 279-286.
  9. X. Qin and Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007), 415-424. https://doi.org/10.1016/j.jmaa.2006.06.067
  10. S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
  11. T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83. https://doi.org/10.1006/jmaa.1997.5398
  12. N. Shioji and W. Takahashi, Strong convergence theorems for asymptotically nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 34 (1998), 87-99. https://doi.org/10.1016/S0362-546X(97)00682-2
  13. W. Takahashi, Nonlinear Functional Analysis, Fixed Point Theory and Its Applications, Yokohama Publishers Inc., Yokohama, 2000.
  14. H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), 279-291. https://doi.org/10.1016/j.jmaa.2004.04.059

Cited by

  1. A HYBRID METHOD FOR A SYSTEM INVOLVING EQUILIBRIUM PROBLEMS, VARIATIONAL INEQUALITIES AND NONEXPANSIVE SEMIGROUP vol.23, pp.3, 2011, https://doi.org/10.11568/kjm.2015.23.3.457