Acknowledgement
This work was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).
References
- M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Math. Vesn., 66 (2014), 223-234.
- G.L. Acedo and H.K. Xu, Iterative methods for strict pseudocontractions in Hilbert spaces, Nonlinear Anal., 67(7) (2007), 2258-2271. https://doi.org/10.1016/j.na.2006.08.036
- R.P. Agarwal, D. ORegan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal., 8 (2007), 61-79.
- S. Aggarwal, I. Uddin and S. Mujahid, Convergence theorems for SP-iteration scheme in a ordered hyperbolic metric space, Nonlinear Funct. Anal. Appl., 26(5) (2021), 961-969.
- F. Akutsah and O. K. Narain, On generalized (α, β)-nonexpansive mappings in Banach spaces with applications, Nonlinear Funct. Anal. Appl., 26(4) (2021), 663-684. doi.org/10.22771/nfaa.2021.26.04.02.
- K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach sapces, Nonlinear Anal., 74 (2011), 4387-4391. https://doi.org/10.1016/j.na.2011.03.057
- V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi contractive operators, Fixed Point Theory Appl., 2 (2004), 97105.
- S.S. Chang, G. Wang, L. Wang, Y.K. Tang and G.L. Ma, ∆-convergence theorems for multi-valued nonexpansive mapping in hyperbolic spaces, Appl. Math. Comput., 249 (2014), 535-540.
- C.E. Chidume and S. Mutangadura, An example on the Mann iteration method for Lipschitzian pseudocontractions, Proc. Amer. Math. Soc., 129 (2001), 2359-2363. https://doi.org/10.1090/S0002-9939-01-06009-9
- S. Dashputre, Padmavati and K. Sakure, Strong and ∆-convergence results for generalized nonexpansive mapping in hyperbolic space, Comm. Math. Appl., 11 (3) (2020), 389-401.
- W.G. Jr. Dotson, On the Mann iterative process, Trans. Amer. Math. Soc., 149 (1970), 65-73. https://doi.org/10.1090/S0002-9947-1970-0257828-6
- M. Imdad and S. Dashputre, Fixed Point Approximation of Picard Normal S-iteration process for generalized nonexpansive mappings in Hyperbolic spaces, Math. Sci., 10 (3) (2016), 131-138. https://doi.org/10.1007/s40096-016-0187-8
- S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
- S.M. Kang, S. Dashputre, B.L. Malagar and Y.C. Kwun, Fixed Point Approximation for Asymptotically Nonexpansive Type Mappings in Uniformly Convex Hyperbolic Spaces, J. Appl. Math., 2015, Article ID 510798, 7 pages.
- S.M. Kang, S. Dashputre, B.L. Malagar and A. Rafiq, On the convergence of fixed points for Lipschitz type mappings in hyperbolic spaces, Fixed Point Theory Appl., 2014, 2014:229.
- S.H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 1 (2013), 1-10.
- A.R. Khan, H. Fukhar-ud-din and M.A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic space, Fixed Point Theory Appl., 2012: 54 (2012). https://doi.org/10.1186/1687-1812-2012-54
- J.K. Kim and S. Dashputre, Fixed point approximation for SKC mappings in hyperbolic spaces, J. Ineq. Appl., 2015: 341 (2015). https://doi.org/10.1186/s13660-015-0868-0
- J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R.L. Gupta Demiclosedness principle and convergence theorems for Lipschitzian type nonself-mappings in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 23(1) (2018), 73-95.
- J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R. Gupta, Fixed point approximation of generalized nonexpansive mappings in hyperbolic spaces, Inter. J. Math. Math. Sci., 2015 Article Id : 368204.
- J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R. Diwan, Convergence theorems for generalized nonexpansive multivalued mapping in hyperbolic space, SpringerPlus, 2016 5:912. https://doi.org/10.1186/s40064-016-2557-y
- U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc., 357(1) (2004), 89-128. https://doi.org/10.1090/S0002-9947-04-03515-9
- L. Leustean, A quadratic rate of asymptotic regularity for CAT(0) spaces, J. Math. Anal. Appl., 325(1) (2007), 386-399. https://doi.org/10.1016/j.jmaa.2006.01.081
- L. Leustean, Nonexpansive iteration in uniformly convex W-hyperbolic space, Functional Spaces, (2008) https://doi.org/10.48550/arXiv.0810.4117.
- W.R. Mann, Mean Value Methods in Iterations, Proc. Amer. Math. Soc., 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
- M.A. Noor, New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 251 (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042
- H. Pir, B. Daraby, S. Rahrovi and M. Ghasemi, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process, Numer. Algor., 81 (2019), 1129-1148. https://doi.org/10.1007/s11075-018-0588-x
- D.R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory, 12 (2011), 187-204.
- C. Suanoom, K. Sriwichai, C. Klin-Eam and W. Khuangsatung, The generalized α-nonexpansive mappings and related convergence theorems in hyperbolic spaces, J. Inform. Math. Sci., 11(1) (2019), 1-17.
- T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(2) (2008), 1088-1095. https://doi.org/10.1016/j.jmaa.2007.09.023
- W. Takahashi, A convexity in metric space and nonexpansive mappings, I. Kodai Math. Sem. Rep., 22 (1970), 142-149.
- W. Takahashi, Y. Takeuchi andf R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 341(1) (2008), 276-286. https://doi.org/10.1016/j.jmaa.2007.09.062
- B.S. Thakur, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzukis generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147-155.
- Y. Yao, Y.J. Cho and Y.C. Liou, Algorithms of common solutions of variational inclusions, mixed equilibrium problems and fixed point problems, Eur. J. Oper. Res., 212(2) (2011), 242-250. https://doi.org/10.1016/j.ejor.2011.01.042