DOI QR코드

DOI QR Code

GENERALIZED 𝛼-NONEXPANSIVE MAPPINGS IN HYPERBOLIC SPACES

  • Received : 2021.05.26
  • Accepted : 2021.12.12
  • Published : 2022.09.01

Abstract

This paper deals with the new iterative algorithm for approximating the fixed point of generalized 𝛼-nonexpansive mappings in a hyperbolic space. We show that the proposed iterative algorithm is faster than all of Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, Thakur and Piri iteration processes for contractive mappings in a Banach space. We also establish some weak and strong convergence theorems for generalized 𝛼-nonexpansive mappings in hyperbolic space. The examples and numerical results are provided in this paper for supporting our main results.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).

References

  1. M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Math. Vesn., 66 (2014), 223-234.
  2. G.L. Acedo and H.K. Xu, Iterative methods for strict pseudocontractions in Hilbert spaces, Nonlinear Anal., 67(7) (2007), 2258-2271. https://doi.org/10.1016/j.na.2006.08.036
  3. R.P. Agarwal, D. ORegan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal., 8 (2007), 61-79.
  4. S. Aggarwal, I. Uddin and S. Mujahid, Convergence theorems for SP-iteration scheme in a ordered hyperbolic metric space, Nonlinear Funct. Anal. Appl., 26(5) (2021), 961-969.
  5. F. Akutsah and O. K. Narain, On generalized (α, β)-nonexpansive mappings in Banach spaces with applications, Nonlinear Funct. Anal. Appl., 26(4) (2021), 663-684. doi.org/10.22771/nfaa.2021.26.04.02.
  6. K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach sapces, Nonlinear Anal., 74 (2011), 4387-4391. https://doi.org/10.1016/j.na.2011.03.057
  7. V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi contractive operators, Fixed Point Theory Appl., 2 (2004), 97105.
  8. S.S. Chang, G. Wang, L. Wang, Y.K. Tang and G.L. Ma, ∆-convergence theorems for multi-valued nonexpansive mapping in hyperbolic spaces, Appl. Math. Comput., 249 (2014), 535-540.
  9. C.E. Chidume and S. Mutangadura, An example on the Mann iteration method for Lipschitzian pseudocontractions, Proc. Amer. Math. Soc., 129 (2001), 2359-2363. https://doi.org/10.1090/S0002-9939-01-06009-9
  10. S. Dashputre, Padmavati and K. Sakure, Strong and ∆-convergence results for generalized nonexpansive mapping in hyperbolic space, Comm. Math. Appl., 11 (3) (2020), 389-401.
  11. W.G. Jr. Dotson, On the Mann iterative process, Trans. Amer. Math. Soc., 149 (1970), 65-73. https://doi.org/10.1090/S0002-9947-1970-0257828-6
  12. M. Imdad and S. Dashputre, Fixed Point Approximation of Picard Normal S-iteration process for generalized nonexpansive mappings in Hyperbolic spaces, Math. Sci., 10 (3) (2016), 131-138. https://doi.org/10.1007/s40096-016-0187-8
  13. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
  14. S.M. Kang, S. Dashputre, B.L. Malagar and Y.C. Kwun, Fixed Point Approximation for Asymptotically Nonexpansive Type Mappings in Uniformly Convex Hyperbolic Spaces, J. Appl. Math., 2015, Article ID 510798, 7 pages.
  15. S.M. Kang, S. Dashputre, B.L. Malagar and A. Rafiq, On the convergence of fixed points for Lipschitz type mappings in hyperbolic spaces, Fixed Point Theory Appl., 2014, 2014:229.
  16. S.H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 1 (2013), 1-10.
  17. A.R. Khan, H. Fukhar-ud-din and M.A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic space, Fixed Point Theory Appl., 2012: 54 (2012). https://doi.org/10.1186/1687-1812-2012-54
  18. J.K. Kim and S. Dashputre, Fixed point approximation for SKC mappings in hyperbolic spaces, J. Ineq. Appl., 2015: 341 (2015). https://doi.org/10.1186/s13660-015-0868-0
  19. J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R.L. Gupta Demiclosedness principle and convergence theorems for Lipschitzian type nonself-mappings in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 23(1) (2018), 73-95.
  20. J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R. Gupta, Fixed point approximation of generalized nonexpansive mappings in hyperbolic spaces, Inter. J. Math. Math. Sci., 2015 Article Id : 368204.
  21. J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R. Diwan, Convergence theorems for generalized nonexpansive multivalued mapping in hyperbolic space, SpringerPlus, 2016 5:912. https://doi.org/10.1186/s40064-016-2557-y
  22. U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc., 357(1) (2004), 89-128. https://doi.org/10.1090/S0002-9947-04-03515-9
  23. L. Leustean, A quadratic rate of asymptotic regularity for CAT(0) spaces, J. Math. Anal. Appl., 325(1) (2007), 386-399. https://doi.org/10.1016/j.jmaa.2006.01.081
  24. L. Leustean, Nonexpansive iteration in uniformly convex W-hyperbolic space, Functional Spaces, (2008) https://doi.org/10.48550/arXiv.0810.4117.
  25. W.R. Mann, Mean Value Methods in Iterations, Proc. Amer. Math. Soc., 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
  26. M.A. Noor, New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 251 (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042
  27. H. Pir, B. Daraby, S. Rahrovi and M. Ghasemi, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process, Numer. Algor., 81 (2019), 1129-1148. https://doi.org/10.1007/s11075-018-0588-x
  28. D.R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory, 12 (2011), 187-204.
  29. C. Suanoom, K. Sriwichai, C. Klin-Eam and W. Khuangsatung, The generalized α-nonexpansive mappings and related convergence theorems in hyperbolic spaces, J. Inform. Math. Sci., 11(1) (2019), 1-17.
  30. T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(2) (2008), 1088-1095. https://doi.org/10.1016/j.jmaa.2007.09.023
  31. W. Takahashi, A convexity in metric space and nonexpansive mappings, I. Kodai Math. Sem. Rep., 22 (1970), 142-149.
  32. W. Takahashi, Y. Takeuchi andf R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 341(1) (2008), 276-286. https://doi.org/10.1016/j.jmaa.2007.09.062
  33. B.S. Thakur, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzukis generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147-155.
  34. Y. Yao, Y.J. Cho and Y.C. Liou, Algorithms of common solutions of variational inclusions, mixed equilibrium problems and fixed point problems, Eur. J. Oper. Res., 212(2) (2011), 242-250. https://doi.org/10.1016/j.ejor.2011.01.042