Nonlinear Functional Analysis and Applications Vol. 27, No. 3 (2022), pp. 449-469 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2022.27.03.01 http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2022 Kyungnam University Press

GENERALIZED α -NONEXPANSIVE MAPPINGS IN HYPERBOLIC SPACES

Jong Kyu Kim¹, Samir Dashputre², Padmavati³ and Kavita Sakure⁴

¹Department of Mathematics Education, Kyungnam University, Changwon, Gyeongnam, 51767 Korea e-mail: jongkyuk@kyugnam.ac.kr

> ²Department of Mathematics, Govt. College, Arjunda, Balod, Chhattisgarh, India email:samir231973@gmail.com

³Department of Mathematics, Govt. V.Y.T. Auto. P.G. College, Durg, Chhattisgarh, India email: padmavati.sudha62@gmail.com

⁴Department of Mathematics, Govt. Digvijay Auto. P.G. College, Rajnandgaon, Chhattisgarh, India email: kavitaaage@gmail.com

Abstract. This paper deals with the new iterative algorithm for approximating the fixed point of generalized α -nonexpansive mappings in a hyperbolic space. We show that the proposed iterative algorithm is faster than all of Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, Thakur and Piri iteration processes for contractive mappings in a Banach space. We also establish some weak and strong convergence theorems for generalized α -nonexpansive mappings in hyperbolic space. The examples and numerical results are provided in this paper for supporting our main results.

1. INTRODUCTION

Many researchers attracted in the direction of approximating the fixed points of nonexpansive mapping and its generalized form [4,5,10,12,14,15,18, 20,21,29] in a hyperbolic space.

⁰Received May 26, 2021. Revised December 8, 2021. Accepted December 12, 2021.

⁰2020 Mathematics Subject Classification: 47A06, 47H09, 47H10, 49M05.

 $^{^0\}mathrm{Keywords}$: Generalized $\alpha\text{-nonexpansive}$ mapping, hyperbolic spaces, fixed point theorems.

⁰Corresponding author: J. K. Kim(jongkyu@kyugnam.ac.kr).

One of the most used iterative techniques was introduced by Mann [25], which is given as follows: Assume that M is a nonempty, closed and convex subset of a Banach space Y and $S: M \to M$ is self mapping.

For any initial point $t_1 \in M$,

$$t_{m+1} = (1 - \alpha_m)t_m + \alpha_m S t_m, \ \forall m \in \mathbb{N},$$
(1.1)

where $\{\alpha_m\}$ is real sequence in (0, 1). Let S be a nonexpansive mapping and control parameter $\{\alpha_m\}$ satisfies the condition $\sum_{m=0}^{\infty} \alpha_m (1 - \alpha_m) = \infty$. Then, the sequence $\{t_m\}$ defined by (1.1) converges weakly to a fixed point of S.

It is well known that the Mann iteration method for the approximation of fixed points of pseudocontractive mappings may not well behave (see [9]). To overcome from this problem, Ishikawa [13] introduced an iterative technique, which is extensively studied for the approximation of fixed points of pseudo-contractive and nonexpansive mappings by many authors in different spaces (see for example Takahashi *et al.* [32], Acedo and Xu [2], Dotson [11]).

The Ishikawa iteration process is defined as

$$\begin{cases} t_{m+1} = (1 - \alpha_m)t_m + \alpha_m S u_m \\ u_m = (1 - \beta_m)t_m + \beta_m S t_m, \ \forall m \in \mathbb{N}, \end{cases}$$
(1.2)

where $\{\alpha_m\}$ and $\{\beta_m\}$ are sequences in (0, 1) and $t_1 \in M$ is an arbitrary.

In 2000, Noor [26] introduced the following three-step iteration process:

$$\begin{cases} t_{m+1} = (1 - \alpha_m)t_m + \alpha_m S u_m, \\ u_m = (1 - \beta_m)t_m + \beta_m S v_m, \\ v_m = (1 - \gamma_m)t_m + \gamma_m S t_m, \quad \forall m \in \mathbb{N}, \end{cases}$$
(1.3)

where $\{\alpha_m\}, \{\beta_m\}$ and $\{\gamma_m\}$ are real sequences in (0,1) and $t_1 \in M$ is an arbitrary.

In 2007, Agarwal *et al.* [3] introduced an iteration method which is called an S-iteration method. Its convergence rate is faster than both Mann and Ishikawa iteration method for contraction mappings. The S-iteration algorithm defined by

$$\begin{cases} t_{m+1} = (1 - \alpha_m)St_m + \alpha_m Su_m \\ u_m = (1 - \beta_m)t_m + \beta_m St_m, \ \forall m \in \mathbb{N}, \end{cases}$$
(1.4)

where $\{\alpha_m\}$ and $\{\beta_m\}$ are sequences in (0, 1) with $\sum_{m=1}^{\infty} \alpha_m \beta_m (1 - \beta_m) = \infty$ and $t_1 \in M$ is an arbitrary. The algorithmic design of S-iteration method (1.4) is comparatively different and independent of Mann and Ishikawa iteration methods, that is, neither Mann nor Ishikawa iterative technique can be reduced into S-iteration and vice-versa.

In 2011, Sahu [28] introduced another form of S-iteration, named as normal S-iteration method which is defined by

$$\begin{cases} t_{m+1} = Su_m \\ u_m = (1 - \alpha_m)t_m + \alpha_m St_m, \ \forall m \in \mathbb{N}, \end{cases}$$
(1.5)

where $\{\alpha_m\}$ is sequence in (0, 1) and $t_1 \in M$ is an arbitrary. Normal Siteration (1.5) is also known as Hybrid-Picard Mann iteration method [16]. S-iteration method have attracted many researchers as alternative iteration method for common fixed point problems (see [8,34]).

In 2014, Abbas and Nazir [1] introduced the following three-step iteration process:

$$\begin{cases} t_{m+1} = (1 - \alpha_m) S v_m + \alpha_m S u_m, \\ u_m = (1 - \beta_m) S t_m + \beta_m S v_m, \\ v_m = (1 - \gamma_m) t_m + \gamma_m S t_m, \quad \forall m \in \mathbb{N}, \end{cases}$$
(1.6)

where $\{\alpha_m\}$, $\{\beta_m\}$ and $\{\gamma_m\}$ are real sequences in (0,1) and $t_1 \in M$ is an arbitrary.

In 2016, Thakur *et al.* [33] introduced the following three-step iteration process:

$$\begin{cases} t_{m+1} = Su_m, \\ u_m = S((1 - \alpha_m)t_m + \alpha_m v_m), \\ v_m = (1 - \beta_m)t_m + \beta_m St_m, \quad \forall m \in \mathbb{N}, \end{cases}$$
(1.7)

where $\{\alpha_m\}$ and $\{\beta_m\}$ are real sequences in (0, 1) and $t_1 \in M$ is an arbitrary. In 2018, Piri *et al.* [27] introduced the following three-step iteration process:

$$\begin{cases} t_{m+1} = (1 - \alpha_m) S v_m + \alpha_m S u_m, \\ u_m = S v_m, \\ v_m = S((1 - \beta_m) t_m + \beta_m S t_m), \quad \forall m \in \mathbb{N}, \end{cases}$$
(1.8)

where $\{\alpha_m\}$ and $\{\beta_m\}$ are real sequences in (0, 1) and $t_1 \in M$ is an arbitrary.

The following question is quite natural.

Question : Is it possible to develop an iteration process which rate of convergence for contractive maps is faster than the iteration process (1.8) and the other iteration processes?

As a very straight forward answer, we introduce the following three-step iteration process:

$$\begin{cases} t_{m+1} = S((1 - \alpha_m)Sv_m + \alpha_mSu_m), \\ u_m = Sv_m, \\ v_m = S((1 - \beta_m)t_m + \beta_mSt_m), \quad \forall m \in \mathbb{N}, \end{cases}$$
(1.9)

where $\{\alpha_m\}$ and $\{\beta_m\}$ are real sequences in (0,1) and $t_1 \in M$ is an arbitrary.

2. Rate of convergence

We now recall the concept which was introduced by Berinde [7] for a comparison of the rates of convergence of different iterative algorithms involving a nonlinear mapping.

Definition 2.1. Let $\{t_m\}$ and $\{u_m\}$ be two iteration processes that both converging to the some fixed point t and u, respectively. Assume that the limit $\lim_{m\to\infty} \frac{||t_m-t||}{||u_m-u||} = l$ exist.

- (1) If l = 0, then we say that $\{t_m\}$ converges to t faster than $\{u_m\}$ to u.
- (2) If $0 < l < \infty$, then we say that $\{t_m\}$ and $\{u_m\}$ have the same rate of convergence.

Theorem 2.2. Let M be a nonempty closed convex subset of a Banach space Y and $S : M \to M$ be a contractive mapping with a contraction constant $c \in (0,1)$ and fixed point u. Let $t_1 \in M$. Then the rate of convergence of sequence $\{t_m\}$ defined in (1.9) is faster than sequence $\{t_m\}$ defined in (1.8).

Proof. From (1.8) and the contractivity of S,

$$\begin{aligned} \|v_m - u\| &= \|S((1 - \beta_m)t_m + \beta_m St_m) - u\| \\ &\leq c(1 - \beta_m)\|t_m - u\| + c\|St_m - u\| \\ &\leq c(1 - \beta_m)\|t_m - u\| + c^2\|t_m - u\| \\ &= c(1 - (1 - c)\beta_m)\|t_m - u\|, \end{aligned}$$
$$\begin{aligned} \|u_m - u\| &= \|Sv_m - u\| \\ &\leq c\|v_m - u\| \\ &= c^2(1 - (1 - c)\beta_m)\|t_m - u\| \end{aligned}$$

and

$$\begin{aligned} \|t_{m+1} - u\| &= \|(1 - \alpha_m)Su_m + \alpha_m Sv_m - u\| \\ &\leq c(1 - \alpha_m)\|u_m - u\| + c\alpha_m\|v_m - u\| \\ &\leq c^2(1 - \alpha_m)\|v_m - u\| + c^1\alpha_m\|v_m - u\| \\ &\leq c(1 - (1 - c)\alpha_m)\|v_m - u\| \\ &= c^2(1 - (1 - c)\alpha_m)(1 - (1 - c)\beta_m)\|t_m - u\|. \end{aligned}$$

Since $\frac{1}{2} < \alpha_m, \beta_m < 1$, we have

$$1 - (1 - c)\alpha_m < c + \frac{1}{2}$$
$$1 - (1 - c)\beta_m < c + \frac{1}{2}.$$

and

Therefore, we have

$$||t_{m+1} - u|| \le c^2 (c + \frac{1}{2})^2 ||t_m - u||.$$

Let $B_m = c^{2m} (c + \frac{1}{2})^{2m} ||t_m - u||$. Then

$$\lim_{m \to \infty} \frac{A_m}{B_m} = \lim_{m \to \infty} \frac{c^{3m} (c + \frac{1}{2})^{2m} ||t_1 - u||}{c^{2m} (c + \frac{1}{2})^{2m} ||t_1 - u||} = 0,$$

so the iterative algorithm (1.9) is faster than (1.8).

Consider the following example which is given in [27].

Example 2.3. Let M = [2,5] and $S : M \to M$ be a mapping defined by $St = \sqrt{2t+3}$, for any $t \in M$. Then we can show that S is a contractive mapping with contractive constant $\frac{1}{\sqrt{7}}$ and $u^* = 3$ is a fixed point of S. Choose $\alpha_m = 0.7$, $\beta_m = 0.65$ and $\gamma_m = 0.8$. Also the initial value $t_1 = 4$.

We compare the convergence of new iteration process with Picard, Mann, Ishikawa, Noor, Agarwal, Normal S-iteration, Abbas, Thakur and Piri iteration processes for contractive mapping. We select the stopping criteria $||t_m - u^*|| \leq 10^{-9}$.

FIGURE 1. Comparison among different iteration processes for Example 2.3

m	Picard	Mann	Ishikawa	Noor	Agarwal
1	4	4	4	4	4
2	3.316624790	3.521637353	3.425913294	3.401577084	3.220900731
3	3.103747667	3.274870030	3.182879466	3.162119876	3.050701106
4	3.034385495	3.145646768	3.078815901	3.065596966	3.011741899
5	3.011440019	3.077407655	3.034023043	3.026566671	3.002725005
6	3.003810919	3.041207070	3.014697475	3.010763574	3.000632714
7	3.001270038	3.021955193	3.006351072	3.004361575	3.000146925
8	3.000423316	3.011703203	3.002744793	3.001767493	3.000034119
9	3.000141102	3.006239935	3.001186308	3.000716280	3.000007923
10	3.000047034	3.003327461	3.000512739	3.000290277	3.000001840
11	3.000015678	3.001774502	3.000221615	3.000117637	3.000000427
12	3.000005226	3.000946360	3.000095787	3.000047673	3.000000099
13	3.000000581	3.000504714	3.000041401	3.000019320	3.00000023
14	3.000000194	3.000269177	3.000017894	3.000007830	3.000000005
15	3.00000065	3.000143560	3.000003343	3.000003173	3.000000001
16	3.000000022	3.000076565	3.000001445	3.000001286	3
17	3.000000007	3.000040835	3.000000625	3.000000521	
18	3.000000002	3.000021779	3.000000270	3.000000211	
19	3.000000001	3.000011615	3.000000117	3.00000086	
20	3	3.000006195	3.000000050	3.00000035	

TABLE 1. Comparison the New iteration process with other processes

TABLE 2. Comparison the New iteration process with other processes

m	Normal S-it.	Abbas	Thakur	Piri	New
1	4	4	4	4	4
2	3.169112606	3.091925931	3.072949818	3.031619256	3.010521303
3	3.029795197	3.008909405	3.005620822	3.001059616	3.000117687
4	3.005288439	3.000868012	3.000434938	3.000035580	3.000001317
5	3.000939899	3.000084610	3.000033666	3.000001195	3.00000015
6	3.000167085	3.000008248	3.000002606	3.00000040	3
7	3.000029704	3.000000804	3.000000202	3.000000001	
8	3.000005281	3.00000078	3.00000016	3	
9	3.000000939	3.00000008	3.000000001		
10	3.000000167	3.000000001	3		
11	3.00000030	3			
12	3.000000005				
13	3.000000001				
14	3				

From Figure 1, Table 1 and Table 2, it is clear that new iteration process takes less number of iterations compared to other iteration processes to approximate fixed point of the mapping S defined in Example 2.3.

3. Convergence results for generalized α -nonexpansive mappings

3.1. Basic Definitions and Results. Throughout this paper, we consider the following definition of a hyperbolic space introduced by Kohlenbach [22].

Definition 3.1. A metric space (Y, d) is said to be a hyperbolic space if there exists a map $W: Y^2 \times [0, 1] \to Y$ satisfying

- (i) $d(u, W(x, y, \alpha)) \le \alpha d(u, x) + (1 \alpha) d(u, y),$
- (ii) $d(W(x, y, \alpha), W(x, y, \beta)) = |\alpha \beta| d(x, y),$
- (iii) $W(x, y, \alpha) = W(y, x, (1 \alpha)),$
- (iv) $d(W(x, z, \alpha), W(y, w, \alpha)) \le \alpha d(x, y) + (1 \alpha) d(z, w)$

for all $x, y, z, w \in Y$ and $\alpha, \beta \in [0, 1]$.

Definition 3.2. ([31]) A metric space is said to be convex, if a triple (Y, d, W) satisfy only (i) in Definition 3.1.

Definition 3.3. ([31]) A subset M of a hyperbolic space Y is said to be convex, if $W(x, y, \alpha) \in M$ for all $x, y \in M$ and $\alpha \in [0, 1]$.

If $x, y \in Y$ and $\lambda \in [0, 1]$, then we use the notation $(1 - \lambda)x \oplus \lambda y$ for $W(x, y, \lambda)$. The following holds even for more general setting of convex metric space [31] : for all $x, y \in Y$ and $\lambda \in [0, 1]$,

$$d(x, (1 - \lambda)x \oplus \lambda y) = \lambda d(x, y)$$

and

$$d(y, (1-\lambda)x \oplus \lambda y) = (1-\lambda)d(x, y).$$

Thus

 $1x \oplus 0y = x, \ 0x \oplus 1y = y$

and

$$(1-\lambda)x \oplus \lambda x = \lambda x \oplus (1-\lambda)x = x$$

Definition 3.4. ([23]) A hyperbolic space (Y, ∂, W) is said to be uniformly convex, if for any $u, x, y \in Y, r > 0$ and $\varepsilon \in (0, 2]$, there exists a $\delta \in (0, 1]$ such that

$$d\left(\frac{1}{2}x \oplus \frac{1}{2}y, u\right) \le (1-\delta)r,$$

whenever $d(x, u) \leq r$, $d(y, u) \leq r$ and $d(x, y) \geq \varepsilon r$.

Definition 3.5. A map $\eta : (0, \infty) \times (0, 2] \to (0, 1]$ which provides such a $\delta = \eta(r, \epsilon)$ for given r > 0 and $\varepsilon \in (0, 2]$, is known as modulus of uniform convexity. We call η monotone if it decreases with r (for a fixed ε).

In [23], Luestean proved that every CAT(0) space is a uniformly convex hyperbolic space with modulus of uniform convexity $\eta(r,\varepsilon) = \frac{\varepsilon^2}{8}$ quadratic in ε .

Now we give the concept of Δ -convergence and some of its basic properties.

Let M be a nonempty subset of metric space (Y, d) and $\{y_m\}$ be any bounded sequence in Y while diam(M) denotes the diameter of M. Consider a continuous functional $r_a(., \{y_m\}): Y \to \mathbb{R}^+$ defined by

$$r_a(y, \{y_m\}) = \limsup_{m \to \infty} d(y_m, y), \quad y \in Y$$

The infimum of $r_a(., \{y_m\})$ over M is said to be an asymptotic radius of $\{y_m\}$ with respect to M and it is denoted by $r_a(M, \{y_m\})$. A point $z \in M$ is said to be an asymptotic center of the sequence $\{y_m\}$ with respect to M if

 $r_a(z, \{y_m\}) = \inf\{r_a(y, \{y_m\}) : y \in M\}.$

The set of all asymptotic center of $\{y_m\}$ with respect to M is denoted by $AC(M, \{y_m\})$. The set $AC(M, \{y_m\})$ may be empty, singleton or have infinitely many points. If the asymptotic radius and asymptotic center are taken with respect to whole space Y, then they are denoted by $r_a(Y, \{y_m\}) = r_a(\{y_m\})$ and $AC(Y, \{y_m\}) = AC(\{y_m\})$, respectively. We know that for $y \in Y$, $r_a(y, \{y_m\}) = 0$ if and only if $\lim_{m\to\infty} y_m = y$ and every bounded sequence has a unique asymptotic center with respect to closed convex subset in uniformly convex Banach spaces.

Definition 3.6. The sequence $\{y_m\}$ in Y is said to be Δ -convergent to $y \in Y$, if y is unique asymptotic center of the every subsequence $\{u_m\}$ of $\{y_m\}$. In this case, we write $\Delta - \lim_{m \to \infty} y_m = y$ and call y is the Δ -limit of $\{y_m\}$.

Lemma 3.7. ([24]) Let (Y, d, W) be a complete uniformly convex hyperbolic space with monotone modulus of uniform convexity η . Then every bounded sequence $\{x_m\}$ in X has a unique asymptotic center with respect to any nonempty closed convex subset M of X.

Consider the following lemma of Khan *et al.* [17] which we use in the sequel.

Lemma 3.8. Let (Y, d, W) be a complete uniformly convex hyperbolic space with monotone modulus of uniform convexity η . Let $x \in Y$ and $\{t_m\}$ be a sequence in [a, b] for some $a, b \in (0, 1)$. If $\{x_m\}$ and $\{y_m\}$ are sequences in Y such that

```
\limsup_{m \to \infty} d(x_m, x) \le c,\limsup_{m \to \infty} d(y_m, x) \le c
```

and

$$\limsup_{m \to \infty} d(W(x_m, y_m, t_m), x) = c,$$

for some $c \ge 0$, then $\lim_{m\to\infty} d(x_m, y_m) = 0$.

Definition 3.9. Let M be a nonempty convex closed subset of a hyperbolic space Y and $\{x_m\}$ be a sequence in Y. Then $\{x_m\}$ is said to be Fejér monotone with respect to M if for all $x \in M$ and $m \in \mathbb{N}$,

$$d(x_{m+1}, x) \le d(x_m, x).$$

Now, we list some definitions and results for class of generalized α -nonexpansive mappings.

Assume that M is a nonempty subset of a hyperbolic space (Y,d) and $S: M \to M$ is a mapping and $F(S) = \{t \in M : St = t\}$ is the set of all fixed points of the map S. The mapping $S: M \to M$ is called nonexpansive, if $||St - Su|| \leq ||t - u||$ for all $t, u \in M$ and is called quasi-nonexpansive, if $F(S) \neq \emptyset$ and $||St - q|| \leq ||t - q||$ for all $t \in M$ and $q \in F(S)$.

We can easily prove the following proposition.

Proposition 3.10. Let $\{x_m\}$ be a sequence in Y and M be a nonempty subset of Y. Let $S : M \to M$ be a nonexpansive mapping with $F(S) \neq \emptyset$. Suppose that $\{x_m\}$ is Fejér monotone with respect to M. Then we have the followings:

- (1) $\{x_m\}$ is bounded.
- (2) The sequence $\{d(x_m, p)\}$ is decreasing and converges for all $p \in F(S)$.
- (3) $\lim_{m\to\infty} D(x_m, F(S))$ exists, where $D(x, A) = \inf_{y\in A} d(x, y)$.

The mapping satisfies the Condition (C), also known as Suzuki's generalized nonexpansive mapping introduced by Suzuki [30] in 2008.

Definition 3.11. Assume that M is nonempty subset of a Banach space Y. Then a mapping $S: M \to M$ is said to satisfy Condition (C), if

$$\frac{1}{2}||t - St|| \le ||t - u|| \text{ implies } ||St - Su|| \le ||t - u||$$
(3.1)

for all $t, u \in M$.

Aoyama *et al.* [6] introduced the class of α -nonexpansive mappings which is the generalization of the class of nonexpansive mappings.

Definition 3.12. Assume that M is a nonempty subset of a Banach space Y. Then a mapping $S : M \to M$ is said to be α -nonexpansive, if there is $\alpha \in [0, 1)$ such that

$$||St - Su||^2 \le \alpha ||St - u||^2 + \alpha ||Su - t||^2 + (1 - 2\alpha)||t - u||^2$$
(3.2) for all $t, u \in M$.

Definition 3.13. ([29]) Assume that M is a nonempty subset of a Banach space Y. Then a mapping $S: M \to M$ is said to be generalized α -nonexpansive, if $\frac{1}{2}||t - St|| \leq ||t - u||$, then there is $\alpha \in [0, 1)$ such that

$$||St - Su|| \le \alpha ||St - u|| + \alpha ||Su - t|| + (1 - 2\alpha)||t - u||$$
(3.3)

for all $t, u \in M$.

Consider the following results of Suanoom *et al.* [29].

Lemma 3.14. ([29]) Assume that M is a nonempty subset of a hyperbolic space Y and $S: M \to M$ is generalized α -nonexpansive. Then for $t, u \in M$,

- (1) $||St S^2t|| \le ||t St||,$
- (2) either $\frac{1}{2}||t St|| \le ||t u||$ or $\frac{1}{2}||St S^2t|| \le ||St u||$,
- (3) either $||St Su|| \le \alpha ||St u|| + \alpha ||Su t|| + (1 2\alpha)||t u||$ or $||S^2t - Su|| \le \alpha ||S^2t - u|| + \alpha ||Su - St|| + (1 - 2\alpha)||St - u||.$

Lemma 3.15. ([29]) Assume that M is a nonempty subset of a hyperbolic space Y and $S : M \to M$ is generalized α -nonexpansive. Then for $t, u \in M$ with $t \leq u$.

$$||t - St|| \le \left(\frac{3+\alpha}{1-\alpha}\right)||t - St|| + ||t - u||.$$

Proposition 3.16. ([29]) Assume that M is a nonempty subset of a hyperbolic space Y and $S: M \to M$ is a generalized α -nonexpansive mapping with $F(S) \neq \emptyset$. Then S is quasi-nonexpansive.

Lemma 3.17. ([29]) Let Y be complete uniformly convex hyperbolic space with monotone modulus of convexity η , M be a nonempty closed convex subset of Y and $S: M \to M$ be a generalized α -nonexpansive mapping. If $\{t_m\}$ is a bounded sequence in M such that $\lim_{m\to\infty} d(t_m, St_m) = 0$, then S has a fixed point in M.

Lemma 3.18. ([29]) Let M be a nonempty, bounded, closed and convex subset of a complete uniformly convex hyperbolic space with monotone modulus of uniform convexity η and S be a generalized α -nonexpansive mapping on M. Suppose that $\{t_m\}$ is a sequence in M, with $d(t_m, St_m) \to 0$. If $AC(M, \{t_m\}) =$ u, then u is a fixed point of S. Moreover, F(S) is closed and convex.

3.2. Convergence Results. Now, we establish the convergence results for new iteration process for generalized α -nonexpansive mappings in hyperbolic spaces, as follows: Let M be a nonempty, closed and convex subset of a

hyperbolic space Y and S be a generalized α -nonexpansive mapping on M. For any $t_1 \in M$ the sequence $\{t_m\}$ is defined by

$$t_{m+1} = W(Sx_m, 0, 0), x_m = W(Sv_m, Su_m, \alpha_m), u_m = W(Sv_m, 0, 0), v_m = W(Sy_m, 0, 0), y_m = W(t_m, St_m, \beta_m), \quad \forall m \in \mathbb{N}.$$
(3.4)

where $\{\alpha_m\}$ and $\{\beta_m\}$ are real sequences in (0, 1).

Lemma 3.19. Let M be a nonempty, closed and convex subset of a hyperbolic space Y and $S: M \to M$ be a generalized α -nonexpansive mapping. If $\{t_m\}$ is a sequence defined by (3.4), then $\{t_m\}$ is Fejér monotone with respect to F(S).

Proof. Since S is a generalized α -nonexpansive, for $u \in F(S)$, we have

$$\frac{1}{2}d(u, Su) = 0 \le d(u, t_m),$$
$$\frac{1}{2}d(u, Su) = 0 \le d(u, u_m)$$

and

$$\frac{1}{2}d(u,Su) = 0 \le d(u,v_m),$$

for all $m \in \mathbb{N}$. Now, also we have

$$d(Su, St_m) \le \alpha d(Su, t_m) + \alpha d(St_m, u) + (1 - 2\alpha)d(u, t_m),$$

 $d(Su, Su_m) \le \alpha d(Su, u_m) + \alpha d(Su_m, u) + (1 - 2\alpha)d(u, u_m)$

and

$$d(Su, Sv_m) \le \alpha d(Su, v_m) + \alpha d(Sv_m, u) + (1 - 2\alpha)d(u, v_m)$$

Now, using (3.4) and Lemma 3.16,

$$d(Su, St_m) \le d(u, t_m),$$

$$d(Su, Su_m) \le d(u, u_m)$$

and

$$d(Su, Sv_m) \le d(u, v_m). \tag{3.5}$$

From (3.4) and Lemma 3.16,

$$d(v_{m}, u) = d(W(Sy_{m}, 0, 0), u)$$

$$= d(Sy_{m}, u)$$

$$\leq d(y_{m}, u)$$

$$= d(W(t_{m}, St_{m}, \beta_{m}), u)$$

$$= (1 - \beta_{m})d(t_{m}, u) + \beta_{m}d(St_{m}, u)$$

$$\leq (1 - \beta_{m})d(t_{m}, u) + \beta_{m}d(t_{m}, u)$$

$$= d(t_{m}, u).$$
(3.6)

From (3.4), (3.6) and Lemma 3.16,

$$d(u_m, u) = d(W(Sv_m, 0, 0), u) = d(Sv_m, u) \leq d(v_m, u) \leq d(t_m, u).$$
(3.7)

From (3.4), (3.6), (3.7) and Lemma 3.16,

$$d(t_{m+1}, u) = d(W(Sx_m, 0, 0), u) = d(Sx_m, u) \leq d(x_m, u) = d(W(Sv_m, Su_m, \alpha_m), u) = (1 - \alpha_m)d(Sv_m, u) + \alpha_m d(Su_m, u) \leq (1 - \alpha_m)d(v_m, u) + \alpha_m d(u_m, u) \leq (1 - \alpha_m)d(t_m, u) + \alpha_m d(t_m, u) = d(t_m, u).$$
(3.8)

Hence, $\{t_m\}$ is Fejér monotone with respect to F(S).

Theorem 3.20. Let M be a nonempty, closed and convex subset of a complete uniformly convex hyperbolic space with monotone modulus of uniform convexity η and S be a generalized α -nonexpansive mapping on M. If $\{t_m\}$ is a sequence defined by (3.4), then F(S) is nonempty if and only if the sequence $\{t_m\}$ is bounded and $\lim_{m\to\infty} d(t_m, St_m) = 0$.

Proof. Assume that F(S) is nonempty and let $u \in F(S)$. From Lemma 3.19 and Proposition 3.10, we have $\{t_m\}$ is Fejér monotone with respect to F(S) and bounded such that $\lim_{m\to\infty} D(t_m, F(S))$ exists, let $\lim_{m\to\infty} d(t_m, u) = l$. **Case I.** Let l = 0. Then

 $d(t_m, St_m) \le d(t_m, u) + d(u, St_m),$

from Lemma 3.16,

$$d(t_m, St_m) \le 2d(t_m, u)$$

On taking limit as $m \to \infty$ both sides of the inequality,

$$\lim_{m \to \infty} d(t_m, St_m) = 0.$$

Case II. Let l > 0. Then, since S is a generalized α -nonexpansive mapping, by Lemma 3.16, for $u \in F(S)$,

$$d(St_m, u) \le d(t_m, u).$$

On taking lim sup as $m \to \infty$ both sides of the ineqality,

$$\limsup_{m \to \infty} d(St_m, u) \le l.$$

On taking lim sup as $m \to \infty$ both sides of the (3.7),

$$\limsup_{m \to \infty} d(v_m, u) \le l.$$
(3.9)

From (3.8),

$$d(t_{m+1}, u) = d(W(Sx_m, 0, 0), u)$$

$$= d(Sx_m, u)$$

$$\leq d(x_m, u)$$

$$= d(W(Sv_m, Su_m, \alpha_m), u)$$

$$= (1 - \alpha_m)d(Sv_m, u) + \alpha_m d(Su_m, u)$$

$$\leq (1 - \alpha_m)d(v_m, u) + \alpha_m d(u_m, u)$$

$$\leq (1 - \alpha_m)d(t_m, u) + \alpha_m d(u_m, u)$$

which provides us

$$d(t_{m+1}, u) - d(t_m, u) \leq \alpha_m (d(u_m, p) - d(t_m, u)),$$

$$d(t_{m+1}, u) - d(t_m, u) \leq \frac{d(t_{m+1}, u) - d(t_m, u)}{\alpha_m}$$

$$\leq d(u_m, u) - d(t_m, u),$$

$$d(t_{m+1}, u) \leq d(u_m, u).$$

On taking limit as $m \to \infty$ both sides of the inequality,

$$l \le \liminf_{m \to \infty} d(u_m, u). \tag{3.10}$$

From (3.9) and (3.10),

$$\lim_{m \to \infty} d(u_m, u) = l.$$

On taking lim sup as $m \to \infty$ in (3.6),

$$\limsup_{m \to \infty} d(v_m, u) \le l. \tag{3.11}$$

From (3.8),

$$d(t_{m+1}, u) = d(W(Sx_m, 0, 0), u) = d(Sx_m, u) \leq d(x_m, u) = d(W(Sv_m, Su_m, \alpha_m), u) = (1 - \alpha_m)d(Sv_m, u) + \alpha_m d(Su_m, u) \leq (1 - \alpha_m)d(v_m, u) + \alpha_m d(u_m, u) \leq (1 - \alpha_m)d(v_m, u) + \alpha_m d(v_m, u) = d(v_m, u).$$

On taking limit as $m \to \infty$ both sides of the inequality,

$$l \le \liminf_{m \to \infty} d(v_m, u). \tag{3.12}$$

From (3.11) and (3.12),

$$\lim_{m \to \infty} d(v_m, u) = l$$

Therefore, by (3.6)

$$\begin{split} l &= \limsup_{m \to \infty} d(v_m, u) \\ &\leq \limsup_{m \to \infty} d(W(t_m, St_m, \beta_m), u) \\ &= \limsup_{m \to \infty} [(1 - \beta_m) d(t_m, u) + \beta_m d(St_m, u)] \\ &\leq \limsup_{m \to \infty} [(1 - \beta_m) d(t_m, u) + \beta_m d(t_m, u)] \\ &= \limsup_{m \to \infty} d(t_m, u) = l. \end{split}$$

By Lemma 3.8, $\lim_{m\to\infty} d(t_m, St_m) = 0.$

Conversely, assume that $\{t_m\}$ is bounded and $\lim_{m\to\infty} d(t_m, St_m) = 0$. Then, from Lemma 3.17, we have Su = u, that is, F(S) is nonempty. \Box

Theorem 3.21. Let M be a nonempty, closed and convex subset of a complete uniformly convex hyperbolic space Y with monotone modulus of uniform convexity η . Let $S : M \to M$ be a generalized α -nonexpansive mapping with $F(S) \neq \emptyset$. Then the sequence $\{t_m\}$ defined in (3.4), is Δ -convergent to a fixed point of S.

Proof. From Lemma 3.19, we observe that $\{t_m\}$ is a bounded sequence, therefore $\{t_m\}$ has a Δ -convergent subsequence. Now we will prove that every Δ -convergent subsequence of $\{t_m\}$ has a unique Δ -limit in F(S). For this, let u and v be Δ -limits of the subsequences $\{u_m\}$ and $\{v_m\}$ of $\{t_m\}$ respectively.

Now by Lemma 3.7, $AC(M, \{u_m\}) = \{u_m\}$ and $AC(M, \{v_m\}) = \{v_m\}$. By Lemma 3.20, we have $\lim_{m\to\infty} d(u_m, Su_m) = 0$.

Now we will prove that u and v are fixed points of S and they are same. If not, then by the uniqueness of the asymptotic center

$$\begin{split} \limsup_{m \to \infty} d(t_m, u) &= \limsup_{m \to \infty} d(u_m, u) \\ &< \limsup_{m \to \infty} d(u_m, v) \\ &= \limsup_{m \to \infty} d(t_m, v) \\ &= \limsup_{m \to \infty} d(t_m, v) \\ &< \limsup_{m \to \infty} d(v_m, u) \\ &= \limsup_{m \to \infty} d(t_m, u), \end{split}$$

which is a contradiction. Hence u = v and sequence $\{t_m\}$ is Δ -convergent to a unique fixed point of S.

Theorem 3.22. Let M be a nonempty, closed and convex subset of a complete uniformly convex hyperbolic space X with monotone modulus of uniform convexity η and $S : M \to M$ be a generalized α -nonexpansive mapping with $F(S) \neq \emptyset$. Then the sequence $\{t_m\}$ which is defined by (3.4), converges strongly to some fixed point of S if and only if $\liminf_{m\to\infty} D(t_m, F(S)) = 0$, where $D(t_m, F(S)) = \inf_{u \in F(S)} d(t_m, u)$.

Proof. Assume that $\{t_m\}$ converges strongly to $u \in F(S)$. Therefore we have $\lim_{m\to\infty} d(t_m, u) = 0$. Since $0 \le D(t_m, F(S)) \le d(t_m, u)$, we have

$$\liminf_{m \to \infty} D(t_m, F(S)) = 0.$$

Next, we prove sufficient part. From Lemma 3.18, the fixed point set F(S) is closed. Suppose that

$$\liminf_{m \to \infty} D(t_m, F(S)) = 0.$$

Then, from (3.8), we have

$$D(t_{m+1}, F(S)) \le D(t_m, F(S)).$$

From Lemma 3.19 and Proposition 3.10, we have $\lim_{m\to\infty} d(t_m, F(S))$ exists. Hence

$$\lim_{m \to \infty} D(t_m, F(S)) = 0.$$

Consider the subsequence $\{t_{m_k}\}$ of $\{t_m\}$ such that $d(t_{m_k}, p_k) < \frac{1}{2^k}$ for all $k \ge 1$, where $\{p_k\}$ is in F(S). From (3.7), we have

$$d(t_{m_{k+1}}, p_k) \le d(t_{m_k}, p_k) < \frac{1}{2^k}$$

which implies that

$$\begin{array}{rcl} d(p_{k+1},p_k) & \leq & d(p_{k+1},t_{n_{k+1}}) + d(t_{n_{k+1}},p_k) \\ & < & \frac{1}{2^{k+1}} + \frac{1}{2^k} \\ & < & \frac{1}{2^{k-1}}. \end{array}$$

This shows that $\{p_k\}$ is a Cauchy sequence. Since F(S) is closed, $\{p_k\}$ is a convergent sequence. Let $\lim_{k\to\infty} p_k = p$. Then we know that $\{t_m\}$ converges to u. Since

$$d(t_{m_k}, u) \le d(t_{m_k}, p_k) + d(p_k, u),$$

we have

$$\lim_{k \to \infty} d(t_{m_k}, u) = 0.$$

Since $\lim_{m\to\infty} d(t_m, u)$ exists, the sequence $\{t_m\}$ converges to u.

Recall that a mapping S from a subset of a hyperbolic space Y into itself with $F(S) \neq \emptyset$ is said to satisfy *condition* (A) (see [19]) if there exists a nondecreasing function $f : [0, \infty) \rightarrow [0, \infty)$ with f(0) = 0, f(t) > 0 for $t \in (0, \infty)$ such that

$$d(x, Sx) \geq f(D(x, F(S))),$$

for all $x \in M$.

Theorem 3.23. Let M be a nonempty, closed and convex subset of a complete uniformly convex hyperbolic space Y with monotone modulus of uniform convexity η and $S: M \to M$ be a generalized α -nonexpansive mapping. Moreover, S satisfies the condition (A) with $F(S) \neq \emptyset$. Then the sequence $\{t_m\}$ which is defined by (3.4), converges strongly to some fixed point of S.

Proof. From Lemma 3.18, we have F(S) is closed. Observe that by Lemma 3.20, we have $\lim_{m\to\infty} d(t_m, St_m) = 0$. It follows from the condition (A) that

$$\lim_{m \to \infty} f(D(t_m, F(S))) \le \lim_{m \to \infty} d(t_m, St_m)$$

Thus, we get $\lim_{m\to\infty} f(D(t_m, F(S))) = 0$. Since $f: [0,1) \to [0,1)$ is a nondecreasing mapping with f(0) = 0 and f(r) > 0 for all $r \in (0,\infty)$, we have $\lim_{m\to\infty} D(t_m, F(S)) = 0$. Rest of the proof follows in lines of Theorem 3.22. Hence the sequence $\{t_m\}$ is convergent to $p \in F(S)$. This completes the proof.

4. Numerical results

Example 4.1. Assume that $M = [0, \infty)$ with usual norm ||.||. The map $S: M \to M$ is defined as

$$St = \begin{cases} \frac{t}{2}, & \text{if } t > 4\\ 0, & \text{if } t \in [0, 4] \end{cases}$$

Then, for $t = \frac{1}{4}$ and $u = \frac{17}{4}$, we have $\frac{1}{2} ||t - St|| = \frac{1}{8}$ and ||t - u|| = 4, therefore

$$\frac{1}{2}\|t - St\| < \|t - u\|.$$

Since $||St - Su|| = \frac{17}{2}$, we have

$$||St - Su|| > ||t - u||,$$

which shows that S is not a Suzuki's generalized nonexpansive mapping.

We claim that S is a generalized α -nonexpansive mapping, for this consider the following cases with $\alpha = \frac{1}{3}$:

Case I: If t > 4 and u > 4, then

$$\begin{aligned} \frac{1}{3} \|St - u\| + \frac{1}{3} \|Su - t\| + \left(1 - \frac{2}{3}\right) \|t - u\| &= \frac{1}{3} \left\| \frac{t}{2} - u \right\| + \frac{1}{3} \left\| t - \frac{u}{2} \right\| + \frac{1}{3} \|t - u\| \\ &\geq \frac{1}{3} \left\| \frac{3t}{2} - \frac{3u}{2} \right\| + \frac{1}{3} \|t - u\| \\ &= \frac{1}{2} \|t - u\| + \frac{1}{3} \|t - u\| \\ &\geq \frac{1}{2} \left\| t - u \right\| \\ &\geq \frac{1}{2} \left\| t - u \right\| \\ &= \|St - Su\|. \end{aligned}$$

Case II: If $0 \le t \le 4$ and $0 \le u \le 4$, then

$$\frac{1}{3}\|St - u\| + \frac{1}{3}\|Su - t\| + \left(1 - \frac{2}{3}\right)\|t - u\| = \frac{1}{3}\|u\| + \frac{1}{3}\|t\| + \frac{1}{3}\|t - u\| \ge \|St - Su\|.$$

Case III: If t > 4 and $0 \le u \le 4$, then

$$\begin{aligned} \frac{1}{3} \|St - u\| + \frac{1}{3} \|Su - t\| + \left(1 - \frac{2}{3}\right) \|t - u\| &= \frac{1}{3} \left\|\frac{t}{2} - u\right\| + \frac{1}{3} \|t\| + \frac{1}{3} \|t - u\| \\ &\geq \frac{1}{3} \left\|\frac{3t}{2} + u\right\| + \frac{1}{3} \|t - u\| \\ &= \frac{1}{3} \left\|\frac{7t}{2}\right\| \\ &\geq \frac{1}{4} \|t\| \\ &= \|St - Su\|. \end{aligned}$$

Therefore S is a generalized α -nonexpansive mapping with fixed point 0.

We compare the convergence behaviour of new iteration process with Mann, Ishikawa, Noor, Normal S-iteration, Thakur, Piri iteration processes for generalized α -nonexpansive mapping defined in Example 4.1. We select the different set of parameters of α_m , β_m , γ_m and stopping criteria

$$||t_m - u^*|| \le 10^{-17}$$

where $u^* \in F(S)$. In Figure 2 and Table 3, we examine the influence of initial values of theses iteration processes using $\alpha_m = \left(\frac{1}{m+7}\right)^{\frac{1}{2}}$, $\beta_m = \frac{2m}{5m+2}$ and $\gamma_m = \frac{m}{m+1}$.

FIGURE 2. Comparison among different iteration processes for Example 4.1

Initial Value	New	Piri	Thakur	Normal S-iter.	Noor	Ishikawa	Mann
100	2	3	3	5	385	382	333
500	3	3	4	7	428	419	374
1000	3	3	4	7	446	439	388
5000	3	4	4	8	492	477	430
10000	3	4	5	8	513	495	444

TABLE 3. Comparison of number of iteration of different iteration process for different initial values

Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).

References

- M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Math. Vesn., 66 (2014), 223-234.
- [2] G.L. Acedo and H.K. Xu, Iterative methods for strict pseudocontractions in Hilbert spaces, Nonlinear Anal., 67(7) (2007), 2258-2271.
- [3] R.P. Agarwal, D. ORegan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal., 8 (2007), 61-79.
- [4] S. Aggarwal, I. Uddin and S. Mujahid, Convergence theorems for SP-iteration scheme in a ordered hyperbolic metric space, Nonlinear Funct. Anal. Appl., 26(5) (2021), 961-969.
- [5] F. Akutsah and O. K. Narain, iOn generalized (α, β)-nonexpansive mappings in Banach spaces with applications, Nonlinear Funct. Anal. Appl., 26(4) (2021), 663-684. doi.org/10.22771/nfaa.2021.26.04.02.
- [6] K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach sapces, Nonlinear Anal., 74 (2011), 4387-4391.
- [7] V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi contractive operators, Fixed Point Theory Appl., 2 (2004), 97105.
- [8] S.S. Chang, G. Wang, L. Wang, Y.K. Tang and G.L. Ma, Δ-convergence theorems for multi-valued nonexpansive mapping in hyperbolic spaces, Appl. Math. Comput., 249 (2014), 535–540.
- [9] C.E. Chidume and S. Mutangadura, An example on the Mann iteration method for Lipschitzian pseudocontractions, Proc. Amer. Math. Soc., 129 (2001), 2359–2363.
- [10] S. Dashputre, Padmavati and K. Sakure, Strong and Δ-convergence results for generalized nonexpansive mapping in hyperbolic space, Comm. Math. Appl., 11 (3) (2020), 389-401.
- [11] W.G. Jr. Dotson, On the Mann iterative process, Trans. Amer. Math. Soc., 149 (1970), 65–73.
- [12] M. Imdad and S. Dashputre, Fixed Point Approximation of Picard Normal S-iteration process for generalized nonexpansive mappings in Hyperbolic spaces, Math. Sci., 10 (3) (2016), 131-138.

- [13] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150.
- [14] S.M. Kang, S. Dashputre, B.L. Malagar and Y.C. Kwun, Fixed Point Approximation for Asymptotically Nonexpansive Type Mappings in Uniformly Convex Hyperbolic Spaces, J. Appl. Math., 2015, Article ID 510798, 7 pages.
- [15] S.M. Kang, S. Dashputre, B.L. Malagar and A. Rafiq, On the convergence of fixed points for Lipschitz type mappings in hyperbolic spaces, Fixed Point Theory Appl., 2014, 2014:229.
- [16] S.H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 1 (2013), 1–10.
- [17] A.R. Khan, H. Fukhar-ud-din and M.A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic space, Fixed Point Theory Appl., 2012: 54 (2012).
- [18] J.K. Kim and S. Dashputre, Fixed point approximation for SKC mappings in hyperbolic spaces, J. Ineq. Appl., 2015: 341 (2015).
- [19] J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R.L. Gupta *Demiclosedness principle and convergence theorems for Lipschitzian type nonself-mappings in CAT(0) spaces*, Nonlinear Funct. Anal. Appl., 23(1) (2018), 73-95.
- [20] J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R. Gupta, Fixed point approximation of generalized nonexpansive mappings in hyperbolic spaces, Inter. J. Math. Math. Sci., 2015 Article Id : 368204.
- [21] J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R. Diwan, Convergence theorems for generalized nonexpansive multivalued mapping in hyperbolic space, SpringerPlus, 2016 5:912.
- [22] U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc., 357(1) (2004), 89-128.
- [23] L. Leustean, A quadratic rate of asymptotic regularity for CAT(0) spaces, J. Math. Anal. Appl., 325(1) (2007), 386-399.
- [24] L. Leustean, Nonexpansive iteration in uniformly convex W-hyperbolic space, Functional Spaces, (2008) https://doi.org/10.48550/arXiv.0810.4117.
- [25] W.R. Mann, Mean Value Methods in Iterations, Proc. Amer. Math. Soc., 4 (1953), 506-510.
- [26] M.A. Noor, New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 251 (2000), 217-229.
- [27] H. Pir, B. Daraby, S. Rahrovi and M. Ghasemi, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process, Numer. Algor., 81 (2019), 1129-1148.
- [28] D.R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory, 12 (2011), 187-204.
- [29] C. Suanoom, K. Sriwichai, C. Klin-Eam and W. Khuangsatung, The generalized αnonexpansive mappings and related convergence theorems in hyperbolic spaces, J. Inform. Math. Sci., 11(1) (2019), 1-17.
- [30] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(2) (2008), 1088-1095.
- [31] W. Takahashi, A convexity in metric space and nonexpansive mappings, I. Kodai Math. Sem. Rep., 22 (1970), 142-149.
- [32] W. Takahashi, Y. Takeuchi andf R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 341(1) (2008), 276–286.

Generalized $\alpha\text{-nonexpansive mappings in Hyperbolic spaces}$

- [33] B.S. Thakur, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzukis generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147-155.
- [34] Y. Yao, Y.J. Cho and Y.C. Liou, Algorithms of common solutions of variational inclusions, mixed equilibrium problems and fixed point problems, Eur. J. Oper. Res., 212(2) (2011), 242–250.