• Title/Summary/Keyword: offset compensation

Search Result 214, Processing Time 0.033 seconds

Performance Analysis of Digital M/W Transmission System adopting Frequency Offset Compensation Algorithm in Multipath Fading Channel (다중경로 페이딩 채널에서 주파수 옵셋 보상 알고리즘을 적용한 디지털 M/W 전송 시스템의 성능 분석)

  • Park, Ki-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.63-70
    • /
    • 2013
  • In this paper, we investigated frequency synchronization through computer simulation of digital M/W transmission system in multipath fading channel. we suggested frequency offset correction algorithm against frequency offset between transmitter and receiver, then evaluated the degree of constellation performance enhancement. From the performance evaluation, in case of large frequency offset, although adopting frequency offset correction scheme, residual frequency offset degraded system performance. As a result, according to frequency offset value between transmitter and receiver residual frequency offset affects system performance significantly. The results of this paper should be utilized for frequency synchronization criterion when frequency band of broadcasting system is rearranged.

Low-complexity Local Illuminance Compensation for Bi-prediction mode (양방향 예측 모드를 위한 저복잡도 LIC 방법 연구)

  • Choi, Han Sol;Byeon, Joo Hyung;Bang, Gun;Sim, Dong Gyu
    • Journal of Broadcast Engineering
    • /
    • v.24 no.3
    • /
    • pp.463-471
    • /
    • 2019
  • This paper proposes a method for reducing the complexity of LIC (Local Illuminance Compensation) for bi-directional inter prediction. The LIC performs local illumination compensation using neighboring reconstruction samples of the current block and the reference block to improve the accuracy of the inter prediction. Since the weight and offset required for local illumination compensation are calculated at both sides of the encoder and decoder using the reconstructed samples, there is an advantage that the coding efficiency is improved without signaling any information. Since the weight and the offset are obtained in the encoding prediction step and the decoding step, encoder and decoder complexity are increased. This paper proposes two methods for low complexity LIC. The first method is a method of applying illumination compensation with offset only in bi-directional prediction, and the second is a method of applying LIC after weighted average step of reference block obtained by bidirectional prediction. To evaluate the performance of the proposed method, BD-rate is compared with BMS-2.0.1 using B, C, and D classes of MPEG standard experimental image under RA (Random Access) condition. Experimental results show that the proposed method reduces the average of 0.29%, 0.23%, 0.04% for Y, U, and V in terms of BD-rate performance compared to BMS-2.0.1 and encoding/decoding time is almost same. Although the BD-rate was lost, the calculation complexity of the LIC was greatly reduced as the multiplication operation was removed and the addition operation was halved in the LIC parameter derivation process.

A Study on the Doppler Compensation Technique of 2-Step Kalman Filter in Mobile Satellite Communication System (이동위성 통신 시스템에서 2단 칼만필터에 의한 도풀러 보상기법에 관한 연구)

  • 강희조;고봉진;조성언
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.166-176
    • /
    • 2000
  • In this paper, the LEO system signal degradation is mainly due to fading and doppler shift, so that the analysis of the signal degradation and compensation techniques are very important. This paper propose a Kalman filter based two step Automatic Frequency Control(AFC) to combat large and time variant frequency offset in low earth orbit satellite communication systems. The proposed Kalman AFC method estimates a frequency offset in two steps, I. e., coarse and fine estimations, extending the frequency acquisition range to even for than the symbol rate. Furthermore, it can track well a time variation of frequency offset. It is shown that the proposed compensator is able to compensate for doppler shift more than several KHz.

  • PDF

A Study on Current Ripple Reduction Due to Offset Error in SRF-PLL for Single-phase Grid-connected Inverters (단상 계통연계형 인버터의 SRF-PLL 옵셋 오차로 인한 전류 맥동 저감에 관한 연구)

  • Hwang, Seon-Hwan;Hwang, Young-Gi;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.68-76
    • /
    • 2014
  • This paper presents an offset error compensation algorithm for the accurate phase angle of the grid voltage in single-phase grid-connected inverters. The offset error generated from the grid voltage measurement process cause the fundamental harmonic component with grid frequency in the synchronous reference frame phase lock loop (PLL). As a result, the grid angle is distorted and the power quality in power systems is degraded. In addition, the dq-axis currents in the synchronous reference frame and phase current have the dc component, first and second order ripples compared with the grid frequency under the distorted grid angle. In this paper, the effects of the offset and scaling errors are analyzed based on the synchronous reference frame PLL. Particularly, the offset error can be estimated from the integrator output of the synchronous reference frame PLL and compensated by using proportional-integral controller. Moreover, the RMS (Root Mean Square) function is proposed to detect the offset error component. The effectiveness of the proposed algorithm is verified through simulation and experiment results.

Study on DC-Offset Cancellation in a Direct Conversion Receiver

  • Park, Hong-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.157.2-157.2
    • /
    • 2012
  • Direct-conversion receivers often suffer from a DC-offset that is a by-product of the direct conversion process to baseband. In general, a basic approach to reduce the DC-offset is to do simple average of the baseband signal and remove the DC by subtracting the average. However, this gives rise to a residual DC offset which degrades the performance when the receiver adopts the coding schemes with high coding rates such as 8-PSK. Therefore, more advanced methods should be additionally required for better performance. While the training sequences are basically designed to have good auto-correlation properties to facilitate the channel estimation, they may be not good for the simultaneous estimation of the channel response and the DC-offset. Also the DC offset compensation under a bad condition does not give good results due to the estimation error. Correspondingly, the proposed scheme employs the two important points. First, the training sequence codes are divided into two groups by MSE(Mean Squared Errors) for estimating the channel taps and then SNR calculated from each group is compared to predefined threshold to do fine DC-offset estimation. Next, ON/OFF module is applied for preventing performance degradation by large estimation error under severe channel conditions. The simulation results of the proposed scheme shows good performances compared to the existing algorithm. As a result, this scheme is surely applicable to the receiver design in many communications systems.

  • PDF

A Low-Spur CMOS PLL Using Differential Compensation Scheme

  • Yun, Seok-Ju;Kim, Kwi-Dong;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.518-526
    • /
    • 2012
  • This paper proposes LC voltage-controlled oscillator (VCO) phase-locked loop (PLL) and ring-VCO PLL topologies with low-phase noise. Differential control loops are used for the PLL locking through a symmetrical transformer-resonator or bilaterally controlled varactor pair. A differential compensation mechanism suppresses out-band spurious tones. The prototypes of the proposed PLL are implemented in a CMOS 65-nm or 45-nm process. The measured results of the LC-VCO PLL show operation frequencies of 3.5 GHz to 5.6 GHz, a phase noise of -118 dBc/Hz at a 1 MHz offset, and a spur rejection of 66 dBc, while dissipating 3.2 mA at a 1 V supply. The ring-VCO PLL shows a phase noise of -95 dBc/Hz at a 1 MHz offset, operation frequencies of 1.2 GHz to 2.04 GHz, and a spur rejection of 59 dBc, while dissipating 5.4 mA at a 1.1 V supply.

The Development of Ultra-Miniature / Wideband VCO (초소형/광대역 VCO 개발)

  • 변상기;강용철;황치전;안태준
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.183-186
    • /
    • 1999
  • The Ultra-miniature and low phase noise Colpitts VCO of 0.06㏄ in size has been developed using the high Q resonator and phase compensation technique. This type is one transistor VCO without a buffer. To design and simulate the VCO accurately, nolinear model parameters of a bipolar transistor are extracted using the measured I-V data and S parameters based on the Gummel-Poon model. Design and simulation have been done by Serenade 7.5 design tool using the extracted nonlinear model parameters. The wideband VCO has been designed using two varactor diodes and open loop gain compensation technique to improve the operating frequency range. The ultra-miniature VCO has shown the phase noise of -91㏈c/Hz at 10KHz offset and output power of -3㏈m The wideband VCO has shown the tuning frequency bandwidth of 150MHz phase noise of -95㏈c/Hz at 10KHz offset and output power of 5㏈m.

  • PDF

A Multi-Channel A/D Data Acquisition System (다중채널 A/D 변환 데이터획득시스템의 개발)

  • Park, Chan-Won;Lee, Min-Seob;Ban, Yun-Ho
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.183-189
    • /
    • 2005
  • In precision instrumentation system, an A/D conversion of signal conditioning has some problems.; offset and drift errors with environmental situation. This paper suggested a development of the Multi-Channel A/D Data Acquisition System and a method of the evaluation and the temperature compensation for the A/D converters with the specific analog and digital circuit including the software. Also, we have designed a hardware and a software filters with smart algorithm for better signal processing of the proposed system. Software approach was adopted to obtain the stable data from A/D converter. As shown in our experimental works, the proposed system is expected to be used in the industrial field where a high precision measurement is required.

  • PDF

A Study on the Measurement Method of Test Waveform for System-level HEMP Immunity Test (체계 수준 HEMP 내성 시험을 위한 시험파형 계측 기법 연구)

  • Yeo, Saedong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.233-240
    • /
    • 2019
  • High-altitude ElectroMagnetic Pulse(HEMP) is a high-power electromagnetic pulse caused by nuclear explosions at altitudes above 30 km. This pulse can cause serious damage to the electrical/electronic device. Therefore, there are a lot of studies on the effects of HEMP in the literature. When conducting studies on the effects of HEMP, it is essential to measure the simulated HEMP. Depending on the need for measurement, this paper focuses on the HEMP measurement method. This paper proposes a measurement method using frequency domain compensation to extract the correct waveform and solves the offset problem more efficiently than the conventional methods. The proposed method is verified by experiment using HEMP simulator and measurement system in ADD.

Quadrature-detection-error Compensation in a Sinusoidally Modulated Optical Interferometer Using Digital Signal Processing

  • Hwang, Jeong-hwan;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.204-209
    • /
    • 2019
  • In an optical interferometer that uses sinusoidal modulation and quadrature detection, the amplitude and offset of the interference signal vary with time, even without considering system noise. As a result, the circular Lissajous figure becomes elliptical, with wide lines. We propose and experimentally demonstrate a method for compensating quadrature detection error, based on digital signal processing to deal with scaling and fitting. In scaling, fluctuations in the amplitudes of in-phase and quadrature signals are compensated, and the scaled signals are fitted to a Lissajous unit circle. To do so, we scale the average fluctuation, remove the offset, and fit the ellipse to a unit circle. Our measurements of a target moving with uniform velocity show that we reduce quadrature detection error from 5 to 2 nanometers.