
Current Optics and Photonics 

Vol. 3, No. 3, June 2019, pp. 204-209

- 204 -

I. INTRODUCTION

Optical interferometers with quadrature detection have 

for decades been trusted for displacement measurements 

that require subnanometer resolution [1-6]. Especially, fiber- 

based optical interferometers using a telecom wavelength 

near 1550 nm and a sinusoidally modulated laser for 

quadrature detection are insensitive to mechanical stress, 

and benefit from commercialized, small optical components 

compared to conventional interferometers, which mostly use 

a 632-nm He-Ne laser and free-space bulk optics [3-6]. 

The primary performance limitation of fiber-based 

optical interferometers is quadrature detection error [3-13], 

which is caused by amplitude differences, dc offsets, and 

phase delays between the signals [12]. Furthermore, an in 

sinusoidally modulated optical interferometer, the signal 

amplitude varies with target movement [2]. Several methods 

have been introduced to reduce the quadrature detection 

error. While they showed good results under the condition 

that the error is fixed during measurement [8-13], in fact 

phase difference, offset, and gain could change with a 

moving target. Thus, a real-time compensation method is 

required. 

In this paper, we propose and experimentally demonstrate 

a simple quadrature-detection-error-compensation method 

using digital signal processing. The quadrature detection 

error is mostly due to phase noise, and has the property of 

being recovered every cycle (period) of the phase signal. 

Therefore, we can largely reduce such error by compensating 

the amount of error every cycle for the target’s motion.

II. PRINCIPLE OF OPERATION

A conventional sinusoidally modulated laser interferometer 

is shown in Fig. 1. The output signal generated by the 

interfering waves at the photodetector is expressed as [2]
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



  coscos  , (1)

where  is the initial intensity,   is the interference 

contrast,  is the modulation frequency,  is the phase 

shift of the interfering signal (changing in time as the target 

moves, i.e. ; for simplicity, we use  instead of ), 

and  is the modulation depth, which is expressed as

  


 , (2)

where  is the wavelength shift due to sinusoidal modu-

lation,  is the laser wavelength in free space, n is the 

refractive index,  is the folding order [3], and   is the 

path-length difference between the reference and sensing 

arms.

Eq. (1) can be expanded into 





 cos  sinsin

 coscos ⋯
, (3)

where  is the Bessel function of the  kind, and  is 

the angular modulation frequency. After mixing this signal 

with sin  or cos  and passing through a low-pass 

filter, we obtain two phase signals that have quadrature 

phase differences of

 



 , (4)

 



 . (5)

From Eqs. (4) and (5) we derive the phase shift  to be

  arctan



 . (6)

If we move the target from position  to position , 

the phase shift changes from  to . The displacement 

 (folding order p = 2) due to the phase change 

  
  is calculated by

  






. (7)

However, for quadrature detection error, Eq. (4) and (5) 

become


 sin 

 
, (8)


 cos 

 
, (9)

where  and  are amplitudes,  and  are dc 

offsets,  and  are the system noise terms, and  and 

 are the phase shifts caused by the quadrature detection 

error. In the presence of significant quadrature detection 

error, the Lissajous figure is distorted into an elliptical 

shape, as shown in Fig. 2(a). The amount of phase change 

is no longer , but becomes ′   , where 

 is the measurement error. The bottom of Fig. 2(a) 

shows the amplitudes of the in-phase (fundamental) and 

quadrature (second harmonic) signals in the time domain, 

with and without error. The phase changes  and ′  

and corresponding displacement values caused by the 

movement from point A to point B also differ visibly. 

Figure 2(b) shows the phase (displacement) error calculated 

from the phase signal, when compared with the ideal case. 

However, the increment in phase with error increases 

initially and then, even though the phase without error 

increases linearly with time. 

FIG. 1. Block diagram of a conventional optical interferometer using sinusoidal modulation.
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To reduce this phase error, we propose a calibration 

method as follows: (1) scale the amplitude fluctuation in 

the phase signal so that the average amplitude fluctuation 

is zero, the maximum is +1, and the minimum is -1, and 

(2) fit the error ellipse to a unit circle using trigonometry. 

During this process we ignore system noise, including 

optical nonlinearity due to the high intensity of the light 

passing through the optical devices, and focus on the 

quadrature detection error.

After being scaled, the signal   is given by


  sin 

 , (10)


  cos 

 . (11)

Applying the appropriate trigonometric formulas to 
  and 


 , we obtain Eqs. (12) and (13), which show a 90° phase 

difference between the two signals, and which simplify to


  

  sin 
 cos 



 cos
sin 

cos
sin

 , 
(12)


  

  sin 
 cos 



 sin
cos 

sin
cos

 , 
(13)

where  is 







 

,  is 









, and 


  . If we normalize the above signals, we obtain 

the Lissajous figure of a unit circle about  as


′ 
cos




  



 sin
 , (14)


′ 
sin




  



 cos
 . (15)

Figure 3 shows the new process, after including our 

proposed modification. In the scaling section, “[-1: +1]” 

and “zero offset” denote the normalization process whereby 

we scale the amplitude to -1 and +1 with an average 

baseline of zero. In the proposed quadrature section, we fit 

the input signals sin 
  and cos 

  to sin
  

and cos
 .

We perform the signal processing using an analog-to- 

digital converter (ADC) and a buffer. For scaling, we sample 

the signals of Eqs. (10) and (11) and store them in the 

buffer as


   


 

   
 

  for 

     ⋯ ,
(16)

where  is the ADC’s sampling period and  is the 

buffer size, which is capable of accommodating the data 

from at least one cycle. We scale the signals at the end of 

each cycle by applying Eq. (17) to the data stored in the 

buffer using


  


max
  min

 


 


   for

     ⋯  and    ,
(17)

FIG. 2. Lissajous figures and phase shift (displacement) with and without quadrature detection error. Subplot (a) shows the phase error 

in the Lissajous figure (top) and the amplitudes of quadrature signals (bottom), and subplot (b) shows the phase error within one cycle.
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where max
   is the maximum of 

 , min
   

is the minimum, and 
   is the average value.

To convert the scaled data to a unit circle, we extend 

Eqs. (12) and (13) to 




 


 cos

sin


cos


sin


, (18)




  


 sin

cos


sin


cos


. (19)

Eqs. (18) and (19) have a respective phase difference of 

90°, and differ in amplitude. We normalize the in-phase 

and quadrature signals by taking


′  
cos




  



 sin
 , (20)


′  
sin




  



 cos
 . (21)

Finally, we calculate the phase difference 
 from 

the   to   increments (see Fig. 4) using Eq. (6), 

as given by


  




 tan
  tan

tan


tan
 tan





 tan











′ 

′  
′ 

′ 


′ 

′  
′ 

′  





 for 

      ⋯ 

. 

(22)

III. EXPERIMENTAL SETUP AND RESULTS

We configured our experiment as shown in Figs. 1 and 

3 above. We used a laser diode (LD) with a center wave-

length of 1554.94 nm and sinusoidally modulated at 

approximately 15 MHz. We adjusted the quadrature-signal 

amplitudes by controlling the depth of the sinusoidal LD 

modulation. We coupled the LD output into a fiber-based 

optical interferometer composed of an optical coupler, a 

collimator, and a target mirror mounted on a motorized 

stage. The interfered signal was converted into an electrical 

signal by a photodetector (PD) and demodulated into 

quadrature signals through a mixer and a low-pass filter. 

These signals were collected by a data acquisition (DAQ) 

system composed of two 12-bit ADCs with 1-kHz sampling 

speed (M2i.3021, Spectrum Ins.). Finally, the proposed 

compensation method was implemented using LabVIEW 

software for n = 1024. To obtain the Lissajous figures, we 

moved the target with uniform velocity. We did not attempt 

to stabilize our system, so that we could demonstrate the 

difference between our method and the method shown in 

Fig. 1.

Figure 5 shows the experimental results using our proposed 

method, as compared to the previous method that only 

uses scaling. As shown in Fig. 5(a), amplitude fluctuation 

of the signal including dc offset has disappeared through 

the proposed scaling method. In Fig. 5(b), Ω
  and Ω

  with 

FIG. 3. Proposed signal-processing block diagram, with a step for quadrature signal modification.

FIG. 4. Phase difference between the   and   
increments on the modified unit circle.
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only scaling had a phase difference of about 45°, whereas 


′  and 

′  had a phase difference of almost 90° after 

fitting; the corresponding Lissajous pattern of 
′  and 

′  

was much more circular in Fig. 5(c), since the phase 

difference was closer to 90°. Figure 5(d) shows the target 

displacement corrected using our proposed compensation, 

as compared to the previous method and to the ideal case. 

The displacement after both correction schemes still showed 

a small fluctuation, from about 5 nanometers using scaling 

only down to 2 nanometers using our proposed method 

of fitting plus scaling. We believe that the remaining 

fluctuation is most likely due to system noise, caused by 

high power modulation and external disturbances [2].

IV. CONCLUSION

We proposed a simple quadrature-detection-error- 

compensation method and demonstrated this approach 

experimentally. We normalized the in-phase and quadrature 

signals so that the maximum and minimum amplitudes 

were mapped to +1 and -1, followed by fitting the scaled 

signal to a unit circle through signal processing. Our 

experimental results showed that we reduced the quadrature 

detection error from 5 nanometers down to 2 nanometers, 

with the residual error likely caused by system noise from 

high power modulation. 
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