• Title/Summary/Keyword: nonlocal boundary value problem

Search Result 13, Processing Time 0.022 seconds

ANALYSIS OF SOME NONLOCAL BOUNDARY VALUE PROBLEMS ASSOCIATED WITH FEEDBACK CONTROL

  • Lee, Hyung-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.325-338
    • /
    • 1998
  • Some nonlocal boundary value problems which arise from a feedback control problem are considered. We give a precise statement of the mathematical problems and then prove the existence and uniqueness of the solutions. We consider the Dirichlet type boundary value problem and the Neumann type boundary value problem with nonlinear boundary conditions. We also provide a regularity results for the solutions.

  • PDF

MONOTONE ITERATION SCHEME FOR A FORCED DUFFING EQUATION WITH NONLOCAL THREE-POINT CONDITIONS

  • Alsaedi, Ahmed
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.53-64
    • /
    • 2007
  • In this paper, we apply the generalized quasilinearization technique to a forced Duffing equation with three-point mixed nonlinear nonlocal boundary conditions and obtain sequences of upper and lower solutions converging monotonically and quadratically to the unique solution of the problem.

EXISTENCE AND UNIQUENESS THEOREMS OF SECOND-ORDER EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Bougoffa, Lazhar;Khanfer, Ammar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.899-911
    • /
    • 2018
  • In this paper, we consider the second-order nonlinear differential equation with the nonlocal boundary conditions. We first reformulate this boundary value problem as a fixed point problem for a Fredholm integral equation operator, and then present a result on the existence and uniqueness of the solution by using the contraction mapping theorem. Furthermore, we establish a sufficient condition on the functions ${\mu}$ and $h_i$, i = 1, 2 that guarantee a unique solution for this nonlocal problem in a Hilbert space. Also, accurate analytic solutions in series forms for this boundary value problems are obtained by the Adomian decomposition method (ADM).

EXISTENCE AND NONEXISTENCE OF POSITIVE SOLUTIONS TO NONLOCAL BOUNDARY VALUE PROBLEMS WITH STRONG SINGULARITY

  • Chan-Gyun Kim
    • East Asian mathematical journal
    • /
    • v.39 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • In this paper, we consider φ-Laplacian nonlocal boundary value problems with singular weight function which may not be in L1(0, 1). The existence and nonexistence of positive solutions to the given problem for parameter λ belonging to some open intervals are shown. Our approach is based on the fixed point index theory.

Small scale effect on the vibration of non-uniform nanoplates

  • Chakraverty, S.;Behera, Laxmi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.495-510
    • /
    • 2015
  • Free vibration of non-uniform embedded nanoplates based on classical (Kirchhoff's) plate theory in conjunction with nonlocal elasticity theory has been studied. The nanoplate is assumed to be rested on two-parameter Winkler-Pasternak elastic foundation. Non-uniform material properties of nanoplates have been considered by taking linear as well as quadratic variations of Young's modulus and density along the space coordinates. Detailed analysis has been reported for all possible casesof such variations. Trial functions denoting transverse deflection of the plate are expressed in simple algebraic polynomial forms. Application of the present method converts the problem into generalised eigen value problem. The study aims to investigate the effects of non-uniform parameter, elastic foundation, nonlocal parameter, boundary condition, aspect ratio and length of nanoplates on the frequency parameters. Three-dimensional mode shapes for some of the boundary conditions have also been illustrated. One may note that present method is easier to handle any sets of boundary conditions at the edges.

ON THE BOUNDARY VALUE PROBLEMS FOR LOADED DIFFERENTIAL EQUATIONS

  • Dzhenaliev, Muvasharkhan T.
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.1031-1042
    • /
    • 2000
  • The equations prescribed in Ω⊂R(sup)n are called loaded, if they contain some operations of the traces of desired solution on manifolds (of dimension which is strongly less than n) from closure Ω. These equations result from approximations of nonlinear equations by linear ones, in the problems of optimal control when the control when the control actions depends on a part of independent variables, in investigations of the inverse problems and so on. In present work we study the nonlocal boundary value problems for first-order loaded differential operator equations. Criterion of unique solvability is established. We illustrate the obtained results by examples.

  • PDF

POSITIVE SOLUTIONS FOR A SYSTEM OF SINGULAR SECOND ORDER NONLOCAL BOUNDARY VALUE PROBLEMS

  • Asif, Naseer Ahmad;Eloe, Paul W.;Khan, Rahmat Ali
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.985-1000
    • /
    • 2010
  • Sufficient conditions for the existence of positive solutions for a coupled system of nonlinear nonlocal boundary value problems of the type -x"(t) = f(t, y(t)), t $\in$ (0, 1), -y"(t) = g(t, x(t)), t $\in$ (0, 1), x(0) = y(0) = 0, x(1) = ${\alpha}x(\eta)$, y(1) = ${\alpha}y(\eta)$, are obtained. The nonlinearities f, g : (0,1) $\times$ (0, $\infty$ ) $\rightarrow$ (0, $\infty$) are continuous and may be singular at t = 0, t = 1, x = 0, or y = 0. The parameters $\eta$, $\alpha$, satisfy ${\eta}\;{\in}\;$ (0,1), 0 < $\alpha$ < $1/{\eta}$. An example is provided to illustrate the results.

Application of Implicit Function Theorem to Existence of Solutions to Ordinary Differential Equations with Nonlocal Boundary Conditions, I (비국소 경계 조건들을 가진 상미분 방정식들의 근의 존재성에 음함수 정리들의 응용 I)

  • Do, Tae-Sug
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.219-224
    • /
    • 2002
  • We consider the problem y"=a(x,y)(y-b), y(0)=0, y'(1)=g(y(${\xi}$), y'(${\xi}$)), (0${\xi}$ fixed in(0,1)) as a model of steady-slate heat conduction in a rod when the heat flux at the end x = 1 is determined by observation of the temperature and heat flux at some interior point ${\xi}$. We establish conditions sufficient for existence, uniqueness.

  • PDF

Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis

  • Arefi, Mohammad;Zur, Krzysztof Kamil
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.615-623
    • /
    • 2020
  • In this paper, free vibration analysis of a functionally graded cylindrical nanoshell resting on Pasternak foundation is presented based on the nonlocal elasticity theory. A two-dimensional formulation along the axial and radial directions is presented based on the first-order shear deformation shell theory. Hamilton's principle is employed for derivation of the governing equations of motion. The solution to formulated boundary value problem is obtained based on a harmonic solution and trigonometric functions for various boundary conditions. The numerical results show influence of significant parameters such as small scale parameter, stiffness of Pasternak foundation, mode number, various boundary conditions, and selected dimensionless geometric parameters on natural frequencies of nanoshell.

Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams

  • Azandariani, Mojtaba Gorji;Gholami, Mohammad;Nikzad, Akbar
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.37-47
    • /
    • 2022
  • In this paper, the non-linear static analysis of Timoshenko nanobeams consisting of bi-directional functionally graded material (BFGM) with immovable ends is investigated. The scratching in the FG nanobeam mid-plane, is the source of nonlinearity of the bending problems. The nonlocal theory is used to investigate the non-linear static deflection of nanobeam. In order to simplify the formulation, the problem formulas is derived according to the physical middle surface. The Hamilton principle is employed to determine governing partial differential equations as well as boundary conditions. Moreover, the differential quadrature method (DQM) and direct iterative method are applied to solve governing equations. Present results for non-linear static deflection were compared with previously published results in order to validate the present formulation. The impacts of the nonlocal factors, beam length and material property gradient on the non-linear static deflection of BFG nanobeams are investigated. It is observed that these parameters are vital in the value of the non-linear static deflection of the BFG nanobeam.