
J. Korean Math. Soc. 47 (2010), No. 5, pp. 985–1000
DOI 10.4134/JKMS.2010.47.5.985

POSITIVE SOLUTIONS FOR A SYSTEM OF
SINGULAR SECOND ORDER NONLOCAL BOUNDARY

VALUE PROBLEMS

Naseer Ahmad Asif, Paul W. Eloe, and Rahmat Ali Khan

Abstract. Sufficient conditions for the existence of positive solutions for
a coupled system of nonlinear nonlocal boundary value problems of the
type

−x′′(t) = f(t, y(t)), t ∈ (0, 1),

−y′′(t) = g(t, x(t)), t ∈ (0, 1),

x(0) = y(0) = 0, x(1) = αx(η), y(1) = αy(η),

are obtained. The nonlinearities f, g : (0, 1) × (0,∞) → (0,∞) are con-
tinuous and may be singular at t = 0, t = 1, x = 0, or y = 0. The
parameters η, α satisfy η ∈ (0, 1), 0 < α < 1/η. An example is provided
to illustrate the results.

1. Introduction

Nonlocal boundary value problems (BVPs) arise in different areas of applied
mathematics and physics. For example, the vibration of a guy wire composed
of N parts with a uniform cross section and different densities in different
parts can be modeled as a nonlocal boundary value problem [18]; problems in
the theory of elastic stability can also be modeled as nonlocal boundary value
problems [19].

The study of nonlocal BVPs for linear second order ordinary differential
equations was initiated by Il’in and Moiseev in [10, 11] and extended to nonlo-
cal linear elliptic boundary value problems by Bitsadze and Samarskǐı, [2, 3, 4].
Existence theory for nonlinear three-point boundary value problems was initi-
ated by Gupta [9]. Since then the study of nonlinear regular multi-point BVPs
has attracted the attention of many researchers; see for example, [5, 9, 13, 14,
15, 17, 18, 20] for scalar equations, and for systems of ordinary differential
equations, see [6, 7, 12].
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Recently, the study of singular BVPs has also attracted some attention. An
excellent resource with an extensive bibliography was produced by Agarwal
and O’Regan [1]. Recently, S. Xie and J. Zhu [21] applied topological degree
theory in a cone to study the following two point BVP for a coupled system of
nonlinear fourth-order ordinary differential equations

−x(4) = f1(t, y), t ∈ (0, 1),

−y′′ = f2(t, x), t ∈ (0, 1),

x(0) = x(1) = x′′(0) = x′′(1) = 0,

y(0) = y(1) = 0.

(1.1)

In [21], the nonlinearities fi ∈ C((0, 1)× R+,R+) satisfy fi(t, 0) ≡ 0 (i = 1, 2)
and may be singular at t = 0 or t = 1 only.

More recently, Y. Zhou and Y. Xu [23] studied the following nonlocal BVP
for a system of second order regular ordinary differential equations

−x′′(t) = f(t, y), t ∈ (0, 1),

−y′′(t) = g(t, x), t ∈ (0, 1),

x(0) = 0, x(1) = αx(η),

y(0) = 0, y(1) = αy(η),

(1.2)

where η ∈ (0, 1), 0 < α < 1/η, f, g ∈ C([0, 1] × [0,∞), [0,∞)), f(t, 0) ≡ 0,
g(t, 0) ≡ 0. The above system was extended to the singular case by B. Liu,
L. Liu, and Y. Wu [16], where the nonlinearities f, g were assumed to be singular
at t = 0 or t = 1 together with the assumption that f(t, 0) ≡ 0, g(t, 0) ≡ 0,
t ∈ (0, 1).

In this paper, we generalize the system (1.2) by allowing f, g to be singular
at t = 0, t = 1, x = 0, or y = 0 and obtain sufficient conditions for the existence
of a positive solution of the BVP for the system of singular equations, (1.2).
By singularity we mean that the functions f(t, u) or g(t, u) are allowed to be
unbounded at t = 0, t = 1, or u = 0. In general, the assumption that there
exist singularities with respect to the dependent variable is not new; see [1, 6],
for example. However, in the case of nonlocal boundary conditions and coupled
systems of ordinary differential equations, we believe this assumption is new.

Throughout this paper, we shall assume that

f, g : (0, 1)× (0,∞) → (0,∞)

are continuous and may be singular at t = 0, t = 1, or u = 0. We also assume
that f(t, 0), g(t, 0) are not identically 0. Let N > max{ 1

η , 1
1−η , 2−α

1−αη} denote a
fixed positive integer. Assume that the following conditions hold:

(A1) there exist K,L ∈ C((0, 1), (0,∞)) and F,G ∈ C((0,∞), (0,∞)) such
that

f(t, u) ≤ K(t)F (u), g(t, u) ≤ L(t)G(u), t ∈ (0, 1), u ∈ (0,∞)
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and

a :=
∫ 1

0

t(1− t)K(t)dt < +∞, b :=
∫ 1

0

t(1− t)L(t)dt < +∞;

(A2) there exist α1, α2 ∈ (0,∞) with α1α2 ≤ 1 such that

lim
u→∞

F (u)
uα1

→ 0, lim
u→∞

G(u)
uα2

→ 0;

(A3) there exist β1, β2 ∈ (0,∞) with β1β2 ≥ 1 such that

lim inf
u→0+

min
t∈[η,1]

f(t, u)
uβ1

> 0, lim inf
u→0+

min
t∈[η,1]

g(t, u)
uβ2

> 0;

(A4) f(t, u), G(u) are non-increasing with respect to u and for each fixed
n ∈ {N, N + 1, N + 2, . . .}, there exists a constant M1 > 0 such that
t ∈ [ 1

n , 1− 1
n ],

f
(
t, 1

n + b µnG( 1
n )

) ≥ M1

(
νn

∫ 1−1/n

η

(s− 1
n )(1− 1

n − s)ds

)−1

;

(A5) F (u), g(t, u) are non-increasing with respect to u and for each fixed
n ∈ {N,N + 1, N + 2, . . .}, there exists a constant M2 > 0 such that

F

(
νn

∫ 1−1/n

η

(s− 1
n )(1− 1

n − s)g(s, M2)ds

)
≤ M2 − 1

n

aµn
.

The parameters µn and νn in (A4) and (A5) are given by

µn =
max{1, α}

1− 2
n + α

n − αη
, νn =

min{1, α}min{η − 1
n , 1− 1

n − η}
1− 2

n + α
n − αη

.

Since N > max{ 1
η , 1

1−η , 2−α
1−αη}, µn, νn > 0.

We state the main results of this paper here.

Theorem 1.1. Assume that (A1) − (A3) hold. Then the system (1.1) has at
least one positive solution.

Theorem 1.2. Assume that (A1), (A2) and (A4) hold. Then the system (1.1)
has at least one positive solution.

Theorem 1.3. Assume that (A1), (A3) and (A5) hold. Then the system (1.1)
has at least one positive solution.

Theorem 1.4. Assume that (A1), (A4) and (A5) hold. Then the system (1.1)
has at least one positive solution.
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2. Preliminaries

For each x ∈ C[0, 1] we write ‖x‖ = max{|x(t)| : t ∈ [0, 1]}. Clearly, C[0, 1]
with the norm ‖ · ‖ is a Banach space. For n ≥ N , define a cone P , and a cone
Kn of C[ 1

n , 1− 1
n ] as follows:

P = {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]} ,

Pn =
{
x ∈ P : x is concave on [0, 1], min

t∈[ 1
n ,1− 1

n ]
x(t) ≥ 1

n

}
,

Kn =
{
x ∈ C

[
1
n , 1− 1

n

]
: x is concave on [0, 1]

}
.

For any real constant r > 0, define

Ωr = {x ∈ C[0, 1] : ‖x‖ < r}

as an open neighborhood of 0 ∈ C[0, 1] of radius r. (x(t), y(t)) is called a
positive solution of (1.1) if

(x, y) ∈ (
C[0, 1] ∩ C2(0, 1)

)× (
C[0, 1] ∩ C2(0, 1)

)
,

x(t) > 0, y(t) > 0 on (0, 1) and (x, y) satisfies (1.1).
The proofs of our main results (Theorems 1.1-1.4) are based on the Guo-

Krasnosel’skii fixed-point theorem.

Lemma 2.1 ([8, Guo Krasnosel’skii Fixed-Point Theorem]). Let K be a cone
of a real Banach space E, and let Ω1, Ω2 be bounded open neighborhoods of
0 ∈ E, and assume Ω1 ⊂ Ω2. Suppose that T : K ∩ (Ω2\Ω1) → K is completely
continuous such that one of the following conditions holds:

(i) ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Ω1 ∩K; ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Ω2 ∩K;
(ii) ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Ω2 ∩K; ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Ω1 ∩K.

Then, T has a fixed point in K ∩ (Ω2\Ω1).

For fixed n ≥ N and z ∈ C[0, 1], the linear boundary value problem

−u′′(t) = z(t), t ∈ [ 1
n , 1− 1

n ],

u( 1
n ) = 1

n , u(1− 1
n ) = αu(η) + 1−α

n ,
(2.1)

has a unique solution

(2.2) u(t) =
1
n

+
∫ 1−1/n

1/n

Hn(t, s)z(s)ds,
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where Hn :
[

1
n , 1− 1

n

]× [
1
n , 1− 1

n

] → [0,∞) is an associated Green’s function
and is defined by
(2.3)

Hn(t, s) =





(t− 1
n )((1− 1

n−s)−α(η−s))
1− 2

n + α
n−αη

− (t− s), 1
n ≤ s ≤ t ≤ 1− 1

n , s ≤ η,

(t− 1
n )((1− 1

n−s)−α(η−s))
1− 2

n + α
n−αη

, 1
n ≤ t ≤ s ≤ 1− 1

n , s ≤ η,

(t− 1
n )(1− 1

n−s)
1− 2

n + α
n−αη

, 1
n ≤ t ≤ s ≤ 1− 1

n , s ≥ η,

(t− 1
n )(1− 1

n−s)
1− 2

n + α
n−αη

− (t− s), 1
n ≤ s ≤ t ≤ 1− 1

n , s ≥ η.

We note that Hn(t, s) → H(t, s) as n →∞, where

H(t, s) =





t(1−s)
1−αη − αt(η−s)

1−αη − (t− s), 0 ≤ s ≤ t ≤ 1, s ≤ η,

t(1−s)
1−αη − αt(η−s)

1−αη , 0 ≤ t ≤ s ≤ 1, s ≤ η,

t(1−s)
1−αη , 0 ≤ t ≤ s ≤ 1, s ≥ η,

t(1−s)
1−αη − (t− s), 0 ≤ s ≤ t ≤ 1−, s ≥ η,

is the Green’s function corresponding the boundary value problem

−u′′(t) = z(t), t ∈ [0, 1],

u(0) = 0, u(1) = αu(η)

with

u(t) =
∫ 1

0

H(t, s)z(s)ds,

as its integral representation. We need the following properties of the Green’s
function Hn in the sequel. For the proof, see [22].

Lemma 2.2. The function Hn can be written as

(2.4) Hn(t, s) = Gn(t, s) +
α

(
t− 1

n

)

1− 2
n + α

n − αη
Gn(η, s),

where

(2.5) Gn(t, s) =
n

n− 2

{(
s− 1

n

) (
1− 1

n − t
)
, 1

n ≤ s ≤ t ≤ 1− 1
n ,(

t− 1
n

) (
1− 1

n − s
)
, 1

n ≤ t ≤ s ≤ 1− 1
n .
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Lemma 2.3. Let

µn =
max{1, α}

1− 2
n + α

n − αη
, νn =

min{1, α}min{η − 1
n , 1− 1

n − η}
1− 2

n + α
n − αη

.

Then
(i) Hn(t, s) ≤ µn

(
s− 1

n

) (
1− 1

n − s
)
, (t, s) ∈ [

1
n , 1− 1

n

]× [
1
n , 1− 1

n

]
,

(ii) Hn(t, s) ≥ νn

(
s− 1

n

) (
1− 1

n − s
)
, (t, s) ∈ [

η, 1− 1
n

]× [
1
n , 1− 1

n

]
.

Now consider the system of nonlinear non-singular BVPs

−x′′(t) = f(t, max{ 1
n , y(t)}), t ∈ [ 1

n , 1− 1
n ],

−y′′(t) = g(t, max{ 1
n , x(t)}), t ∈ [ 1

n , 1− 1
n ],

x( 1
n ) = 1

n , x(1− 1
n ) = αx(η) + 1−α

n ,

y( 1
n ) = 1

n , y(1− 1
n ) = αy(η) + 1−α

n ,

(2.6)

where n > N . Write (2.6) as an equivalent system of integral equations

x(t) =
1
n

+
∫ 1−1/n

1/n

Hn(t, s)f(s, max{ 1
n , y(s)})ds,

y(t) =
1
n

+
∫ 1−1/n

1/n

Hn(t, s)g(s,max{ 1
n , x(s)})ds.

(2.7)

Thus, (x, y) is a solution of (2.6) if and only if

(x, y) ∈ C[ 1
n , 1− 1

n ]× C[ 1
n , 1− 1

n ]

and (x, y) is a solution of (2.7).
Define operators An, Bn, Tn : Kn → Kn by

(Any)(t) =
1
n

+
∫ 1−1/n

1/n

Hn(t, s)f(s, max{ 1
n , y(s)})ds,

(Bnx)(t) =
1
n

+
∫ 1−1/n

1/n

Hn(t, s)g(s,max{ 1
n , x(s)})ds,

(Tnx)(t) = (An(Bnx))(t).

(2.8)

If un ∈ Kn is a fixed point of Tn, then the system of BVPs (2.6) has a solution
(xn, yn) given by

{
xn(t) = un(t),
yn(t) = (Bnun)(t).

By construction, the system of BVPs (2.6) is regular and so the following lemma
is standard.

Lemma 2.4. Assume f, g : (0, 1) × (0,∞) → [0,∞) are continuous. Then
Tn : Kn → Kn is completely continuous.



SINGULAR SECOND ORDER NONLOCAL BOUNDARY VALUE PROBLEMS 991

3. Main results

Proof of Theorem 1.1. By (A2), there exist constants C1, C2, N1, N2 > 0 such
that

(3.1) 4α1abα1µα1+1
n C1C

α1
2 < 1,

and

(3.2) F (x) ≤ C1x
α1 + N1, G(x) ≤ C2x

α2 + N2 for x ≥ 1
n

.

Choose a constant R > 0 such that

(3.3) R ≥
1
n + 2α1aµnC1

nα1 + aµnN1 + 4α1abα1µα1+1
n C1N

α1
2

1− 4α1abα1µα1+1
n C1C

α1
2

.

For any u ∈ ∂ΩR ∩Kn, using (2.8) and (A1), we have

(Tnu)(t) = (An(Bnu))(t) =
1
n

+
∫ 1−1/n

1/n

Hn(t, s)f(s, (Bnu)(s))ds

=
1
n

+
∫ 1−1/n

1/n

Hn(t, s)f(s,
1
n

+
∫ 1−1/n

1/n

Hn(s, τ)g(τ, u(τ))dτ)ds

≤ 1
n

+
∫ 1−1/n

1/n

Hn(t, s)K(s)F (
1
n

+
∫ 1−1/n

1/n

Hn(s, τ)g(τ, u(τ))dτ)ds.

In view of (3.2) and (A2), it follows that

(Tnu)(t)

≤ 1
n

+
∫ 1−1/n

1/n

Hn(t, s)K(s)(C1(
1
n

+
∫ 1−1/n

1/n

Hn(s, τ)g(τ, u(τ))dτ)α1 + N1)ds

=
1
n

+ C1

∫ 1−1/n

1/n

Hn(t, s)K(s)(
1
n

+
∫ 1−1/n

1/n

Hn(s, τ)g(τ, u(τ))dτ)α1ds

+ N1

∫ 1−1/n

1/n

Hn(t, s)K(s)ds

≤ 1
n

+ C1

∫ 1−1/n

1/n

Hn(t, s)K(s)(
1
n

+
∫ 1−1/n

1/n

Hn(s, τ)L(τ)G(u(τ))dτ)α1ds

+ N1

∫ 1−1/n

1/n

Hn(t, s)K(s)ds

≤ 1
n

+ C1

∫ 1−1/n

1/n

Hn(t, s)K(s)

·
(

1
n

+
∫ 1−1/n

1/n

Hn(s, τ)L(τ)(C2(u(τ))α2 + N2)dτ

)α1

ds
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+ N1

∫ 1−1/n

1/n

Hn(t, s)K(s)ds.

Employing (i) of Lemma 2.3, we obtain

(Tnu)(t)

≤ 1
n

+ C1µn

∫ 1−1/n

1/n

(s− 1
n

)(1− 1
n
− s)K(s)ds

·
(

1
n

+ µn

∫ 1−1/n

1/n

(τ − 1
n

)(1− 1
n
− τ)L(τ)(C2(u(τ))α2 + N2)dτ

)α1

+ N1µn

∫ 1−1/n

1/n

(s− 1
n

)(1− 1
n
− s)K(s)ds

≤ 1
n

+ C1µn

∫ 1−1/n

1/n

s(1− s)K(s)ds

·
(

1
n

+ µn

∫ 1−1/n

1/n

τ(1− τ)L(τ)(C2(u(τ))α2 + N2)dτ

)α1

+ N1µn

∫ 1−1/n

1/n

s(1− s)K(s)ds.

Hence,

(Tnu)(t)

≤ 1
n

+ C1µn

∫ 1−1/n

1/n

s(1− s)K(s)ds

·
(

1
n

+ µn

∫ 1−1/n

1/n

τ(1− τ)L(τ)(C2‖u‖α2 + N2)dτ

)α1

+ N1µn

∫ 1−1/n

1/n

s(1− s)K(s)ds

≤ 1
n

+ µnC1

∫ 1

0

s(1− s)K(s)ds

·
(

1
n

+ µn

∫ 1

0

τ(1− τ)L(τ)dτ(C2‖u‖α2 + N2)
)α1

+ µnN1

∫ 1

0

s(1− s)K(s)ds

≤ 1
n

+ aµnN1 + 2α1aµnC1(
1

nα1
+ bα1µα1

n (C2‖u‖α2 + N2)α1)

≤ 1
n

+
2α1aµnC1

nα1
+ aµnN1 + 22α1abα1µα1+1

n C1(Cα1
2 ‖u‖α1α2 + Nα1

2 ).
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Using (3.3), we obtain

(3.4) ‖Tnu‖ ≤ ‖u‖ for all u ∈ ∂ΩR ∩Kn.

Now, by (A3), there exist constants C3, C4 > 0 and ρ ∈ (0, R) such that

(3.5) f(t, x) ≥ C3x
β1 , g(t, x) ≥ C4x

β2 for x ∈ [0, ρ] and t ∈ [η, 1].

Choose

(3.6) rn = min



ρ,

C3C
β1
4 νβ1+1

n

nβ1β2

(∫ 1−1/n

η

(s− 1
n )(1− 1

n − s)ds

)β1+1


 .

For any u ∈ ∂Ωrn
∩Kn, using (2.8), (3.5) and (ii) of Lemma 2.3, we have

(Tnu)(t) = (An(Bnu))(t)

=
1
n

+
∫ 1−1/n

1/n

Hn(t, s)f(s,
1
n

+
∫ 1−1/n

1/n

Hn(s, τ)g(τ, u(τ))dτ)ds

≥
∫ 1−1/n

1/n

Hn(t, s)f(s,
1
n

+
∫ 1−1/n

1/n

Hn(s, τ)g(τ, u(τ))dτ)ds

≥
∫ 1−1/n

η

Hn(t, s)f(s,
1
n

+
∫ 1−1/n

1/n

Hn(s, τ)g(τ, u(τ))dτ)ds

≥ C3

∫ 1−1/n

η

Hn(t, s)

(∫ 1−1/n

η

Hn(s, τ)g(τ, u(τ))dτ

)β1

ds

≥ C3νn

∫ 1−1/n

η

(s− 1
n

)(1− 1
n
− s)ds

·
(

νn

∫ 1−1/n

η

(τ − 1
n

)(1− 1
n
− τ)g(τ, u(τ))dτ

)β1

≥ C3ν
β1+1
n

∫ 1−1/n

η

(s− 1
n

)(1− 1
n
− s)ds

·
(

C4

∫ 1−1/n

η

(τ − 1
n

)(1− 1
n
− τ)(u(τ))β2dτ

)β1

≥ C3C
β1
4 νβ1+1

n

nβ1β2

(∫ 1−1/n

η

(s− 1
n

)(1− 1
n
− s)ds

)β1+1

.

Thus, in view of (3.6), it follows that

(3.7) ‖Tnu‖ ≥ ‖u‖ for u ∈ ∂Ωrn ∩Kn.

By Lemma 2.1, Tn has a fixed point un ∈ Kn ∩ (ΩR\Ωrn).
Note that

(3.8) rn ≤ un(t) ≤ R for all t ∈ [ 1
n , 1− 1

n ]
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and rn → 0 as n → ∞. Thus, we have exhibited a uniform bound for each
un ∈ [ 1

n , 1− 1
n ] and for m ≥ n, {um} is uniformly bounded on [ 1

n , 1− 1
n ].

To show that {um} for m ≥ n, is equicontinuous on [ 1
n , 1− 1

n ], consider for
t ∈ [ 1

n , 1− 1
n ], the integral equation

um(t) = um( 1
m ) +

∫ 1−1/m

1/m

Hm(t, s)f(s, (Bmum)(s))ds.

Employ Lemma 2.2 to obtain

um(t)

= um( 1
m )+

∫ 1−1/m

1/m

[
Gm(t, s) +

α(t− 1
m )

1− 2
m + α

m − αη
Gm(η, s)

]
f(s, (Bmum)(s))ds

= um( 1
m )+

m

m− 2

∫ t

1/m

(s− 1
m

)(1− 1
m
− t)f(s, (Bmum)(s))ds

+
m

m− 2

∫ 1−1/m

t

(t− 1
m

)(1− 1
m
− s)f(s, (Bmum)(s))ds

+
α(t− 1

m )
1− 2

m + α
m − αη

∫ 1−1/m

1/m

Gm(η, s)f(s, (Bmum)(s))ds.

Differentiate with respect to t to obtain

u′m(t) =− m

m− 2

∫ t

1/m

(s− 1
m

)f(s, (Bmum)(s))ds

+
m

m− 2

∫ 1−1/m

t

(1− 1
m
− s)f(s, (Bmum)(s))ds

+
α

1− 2
m + α

m − αη

∫ 1−1/m

1/m

Gm(η, s)f(s, (Bmum)(s))ds,

which implies that for t ∈ [ 1
n , 1− 1

n ]

|u′m(t)| ≤
∫ 1−1/m

1/m

f(s, (Bmum)(s))ds

+
α

1− 2
m + α

m − αη

∫ 1−1/m

1/m

Gm(η, s)f(s, (Bmum)(s))ds.

(3.9)

Hence, for m ≥ n, {um} is equicontinuous on [ 1
n , 1− 1

n ].
For m ≥ n, define

vm =





um( 1
n ), if 0 ≤ t ≤ 1

n ,

um(t), if 1
n ≤ t ≤ 1− 1

n ,

αum(η), if 1− 1
n ≤ t ≤ 1.



SINGULAR SECOND ORDER NONLOCAL BOUNDARY VALUE PROBLEMS 995

Since vm is a constant extension of um to [0, 1], the sequence {vm} is uniformly
bounded and equicontinuous on [0, 1]. Thus, there exists a subsequence {vnk

}
of {vm} converging uniformly on [0, 1] to v ∈ P ∩ (ΩR\Ωr).

We introduce the notation

xnk
(t) = vnk

(t), ynk
(t) =

1
nk

+
∫ 1−1/nk

1/nk

Hnk
(t, s)g(s, vnk

(s))ds,

x(t) = lim
nk→∞

xnk
(t), y(t) = lim

nk→∞
ynk

(t),

and for t ∈ [0, 1] consider the integral equation

xnk
(t) = xnk

( 1
nk

) +
∫ 1−1/nk

1/nk

Hnk
(t, s)f(t, ynk

(s))ds.

Letting nk →∞, we have

x(t) = x(0) +
∫ 1

0

H(t, s)f(t, y(s))ds,

and

y(t) =
∫ 1

0

H(t, s)g(s, x(s))ds, t ∈ [0, 1].

Moreover,

x(0) = 0, x(1) = αx(η), y(0) = 0, y(1) = αy(η).

Hence, (x(t), y(t)) is a solution of the system (1.2).
Since

f, g : (0, 1)× (0,∞) → (0,∞),

f(t, 0), g(t, 0) are not identically 0, and H is of fixed sign on (0, 1) × (0, 1), it
follows that x, y > 0 on (0, 1). ¤

Example 3.1. Let

f(t, y) =
1

t(1− t)

(
1
y

+ 3y1/3

)
, g(t, x) =

1
t(1− t)

(
1
x

+ 4x

)

and α = 2, η = 1
3 . Choose

K(t) = L(t) =
1

t(1− t)
, F (y) =

1
y

+ 3y1/3, G(x) =
1
x

+ 4x,

and α1 = 1
2 , α2 = 2, β1 = β2 = 1. Then (A1) − (A3) are satisfied. Hence, by

Theorem 1.1, system (1.2) has a positive solution.
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Proof of Theorem 1.2. For u ∈ ∂ΩM1 ∩ Kn, using (2.8), we obtain for t ∈
[ 1
n , 1− 1

n ]

(Tnu)(t) = (An(Bnu))(t) =
1
n

+
∫ 1−1/n

1/n

Hn(t, s)f(s, (Bnu)(s))ds

=
1
n

+
∫ 1−1/n

1/n

Hn(t, s)f(s,
1
n

+
∫ 1−1/n

1/n

Hn(s, τ)g(τ, u(τ))dτ)ds

≥
∫ 1−1/n

1/n

Hn(t, s)f(s,
1
n

+
∫ 1−1/n

1/n

Hn(s, τ)g(τ, u(τ))dτ)ds.

Using (A1), (A4) and Lemma 2.3, we have

(Tnu)(t)

≥
∫ 1−1/n

1/n

Hn(t, s)f(s,
1
n

+ µn

∫ 1−1/n

1/n

(τ − 1
n

)(1− 1
n
− τ)g(τ, u(τ))dτ)ds

≥
∫ 1−1/n

1/n

Hn(t, s)f(s,
1
n

+ µn

∫ 1−1/n

1/n

(τ − 1
n

)(1− 1
n
− τ)L(τ)G(u(τ))dτ)ds

≥
∫ 1−1/n

1/n

Hn(t, s)f(s,
1
n

+ µnG(
1
n

)
∫ 1−1/n

1/n

(τ − 1
n

)(1− 1
n
− τ)L(τ)dτ)ds

≥
∫ 1−1/n

1/n

Hn(t, s)f(s,
1
n

+ b µn G(
1
n

))ds

≥ M1

∫ 1−1/n

1/n

Hn(t, s)ds(νn

∫ 1−1/n

η

(τ − 1
n

)(1− 1
n
− τ)dτ)−1 ≥ M1,

which implies that

(3.10) ‖Tnu‖ ≥ ‖u‖ for all u ∈ ∂ΩM1 ∩Kn.

In view of (A2), we can choose R > M1 such that (3.4) holds. Hence, by
Lemma 2.1, Tn has a fixed point un ∈ Kn ∩ (ΩR\ΩM1). By the same process
as done in Theorem 1.1, the system (1.2) has a positive solution. ¤

Example 3.2. Let

f(t, y) =
e

1
y

t(1− t)
, g(t, x) =

e
1
x

t(1− t)

and α = 2, η = 1
3 . Choose

K(t) = L(t) =
1

t(1− t)
, F (y) = e

1
y , G(x) = e

1
x .

Choose constant M1 such that M1 ≤ 4(n−3)
n e

n
1+6nen

∫ 1−1/n

1/3
(s− 1

n )(1− 1
n −s)ds.

Then (A1), (A2) and (A4) are satisfied. Hence, by Theorem 1.2, system (1.2)
has a positive solution.
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Proof of Theorem 1.3. For u ∈ ∂ΩM2 ∩Kn, using (2.8), we have

(Tnu)(t) =
1
n

+
∫ 1−1/n

1/n

Hn(t, s)f(s, (Bnu)(s))ds

=
1
n

+
∫ 1−1/n

1/n

Hn(t, s)f(s,
1
n

+
∫ 1−1/n

1/n

Hn(s, τ)g(τ, u(τ))dτ)ds.

In view of (A1), (A5) and Lemma 2.3, we obtain

≤ 1
n

+
∫ 1−1/n

1/n

Hn(t, s)K(s)F (
1
n

+
∫ 1−1/n

1/n

Hn(s, τ)g(τ, u(τ))dτ)ds

≤ 1
n

+
∫ 1−1/n

1/n

Hn(t, s)K(s)F (
∫ 1−1/n

1/n

Hn(s, τ)g(τ, u(τ))dτ)ds

≤ 1
n

+
∫ 1−1/n

1/n

Hn(t, s)K(s)F (
∫ 1−1/n

1/n

Hn(s, τ)g(τ, M2)dτ)ds

≤ 1
n

+
∫ 1−1/n

1/n

Hn(t, s)K(s)F (
∫ 1−1/n

η

Hn(s, τ)g(τ, M2)dτ)ds

≤ 1
n

+
∫ 1−1/n

1/n

Hn(t, s)K(s)F (νn

∫ 1−1/n

η

(τ − 1
n

)(1− 1
n
− τ)g(τ, M2)dτ)ds

=
1
n

+ F (νn

∫ 1−1/n

η

(τ − 1
n

)(1− 1
n
− τ)g(τ, M2)dτ)

∫ 1−1/n

1/n

Hn(t, s)K(s)ds

≤ 1
n

+ µnF (νn

∫ 1−1/n

η

(τ − 1
n

)(1− 1
n
− τ)g(τ, M2)dτ)

·
∫ 1−1/n

1/n

(s− 1
n

)(1− 1
n
− s)K(s)ds

≤ 1
n

+ aµnF (νn

∫ 1−1/n

η

(τ − 1
n

)(1− 1
n
− τ)g(τ, M2)dτ) ≤ M2,

which implies that

(3.11) ‖Tnu‖ ≤ ‖u‖ for all u ∈ ∂ΩM2 ∩Kn.

By (A3), we can choose ρ ∈ (0,M2) such that (3.7) holds. Hence, Tn has a
fixed point un ∈ Kn∩ (ΩM2\Ωρ). By the same process as done in Theorem 1.1,
the system (1.2) has a positive solution. ¤

Example 3.3. Let

f(t, y) =





ye
1
y

t(1−t) , y ≤ 1,
e

t(1−t) , y > 1,
g(t, x) =

{
xe

1
x

t(1−t) , x ≤ 1,
e

t(1−t) , x > 1,
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and α = 2, η = 1
3 . Choose

K(t) = L(t) =
1

t(1− t)
, F (y) =

{
ye

1
y , y ≤ 1,

e, y > 1,
G(x) =

{
xe

1
x , x ≤ 1,

e, x > 1,

and β1 = β2 = 1. Choose constant M2 such that

M2 ≥ max

{
1,

1
n

+ 6F (e(1− 3/n)
∫ 1−1/n

1/3

(s− 1/n)(1− 1/n− s)
s(1− s)

ds)

}
.

Then (A1), (A3) and (A5) are satisfied. Hence, by Theorem 1.3, system (1.2)
has a positive solution.

Proof of Theorem 1.4. By (A1) and (A4), we obtain (3.10). By (A5) we can
choose a constant M2 > M1 such that (3.11) holds. Then Tn has a fixed point
un ∈ Kn ∩ (ΩM2\ΩM1). By the same process as done in Theorem 1.1, the
system (1.2) has a positive solution. ¤

Example 3.4. Let

f(t, y) =
1

t(1− t)
1√
y
, g(t, x) =

1
t(1− t)

1
x2

and α = 2, η = 1
3 . Choose

K(t) = L(t) =
1

t(1− t)
, F (y) =

1√
y
, G(x) =

1
x2

.

Choose constants M1 and M2 such that M1 ≤ 4(n−3)√
n(6n3+1)

∫ 1− 1
n

1/3 (s− 1
n )(1− 1

n −
s)ds and M2 ≥ 1

6n ( 1
6 −

√
n

n−3 (
∫ 1−1/n

1/3
(s−1/n)(1−1/n−s)

s(1−s) ds)−1/2)−1. Then (A1),

(A4) and (A5) are satisfied. Hence, by Theorem 1.4, system (1.2) has a positive
solution.
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