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MONOTONE ITERATION SCHEME FOR A FORCED
DUFFING EQUATION WITH NONLOCAL THREE-POINT
CONDITIONS

AHMED ALSAEDI

ABSTRACT. In this paper, we apply the generalized quasilinearization
technique to a forced Duffing equation with three-point mixed nonlinear
nonlocal boundary conditions and obtain sequences of upper and lower
solutions converging monotonically and quadratically to the unique solu-
tion of the problem.

1. Introduction

Dulffing equation is a well known nonlinear equation of applied science which
is used as a powerful tool to discuss some important practical phenomena such
as periodic orbit extraction, nonuniformity caused by an infinite domain, non-
linear mechanical oscillators, etc. Another important application of Duffing
equation is in the field of the prediction of diseases. A careful measurement
and analysis of a strongly chaotic voice has the potential to serve as an early
warning system for more serious chaos and possible onset of disease. This chaos
is stimulated with the help of Duffing equation. In fact, the success at analyz-
ing and predicting the onset of chaos in speech and its simulation by equations
such as the Duffing equation has enhanced the hope that we might be able to
predict the onset of arrhythmia and heart attacks someday. Such predictions
are based on the numerical solutions of the Duffing equation. However, there
do exist a number of powerful procedures for obtaining approximate solutions
of nonlinear problems such as Newton-Raphson method, Galerkins method,
expansion methods, iterative techniques, method of upper and lower solutions
to name a few. The monotone iterative method and Newton’s method are
known to be two efficient techniques for finding roots of nonlinear equations.
The first one applies to equations involving monotone operators and produces a
sequence converging monotonically to a solution. The Newton method has the
advantage over the monotone iterative method that it provides quadratically
convergent sequences. Applied to nonlinear differential equations, Newton’s
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method is known as the quasilinearization method. The origin of the quasilin-
earization lies in the theory of dynamic programming [6-7, 20]. This method
applies to semilinear equations with convex or concave nonlinearities and pro-
vides an explicit analytic representation of approximate solution of the given
problem. However, the concavity/convexity assumption proved to be a stum-
bling block for further development of the theory. The nineties brought new
dimensions to this technique. The most interesting new idea was introduced
by Lakshmikantham [17-18] who generalized the method of quasilinearization
by relaxing the convexity assumption. This extension, now known as gener-
alized quasilinearization, consists of the method of lower and upper solutions
and monotone iterative technique together with differential inequalities and
comparison results. This development was so significant that it attracted the
attention of many researchers and the method was extensively developed and
applied to a wide range of initial and boundary value problems [1, 3-4, 8-9, 19]
and references therein. Some real-world applications of the quasilinearization
technique can be found in [23-26].

Multi-point nonlinear boundary value problems, which refer to a different
family of boundary conditions in the study of disconjugacy theory [10], have
been addressed by many authors, for example, Kiguradze and Lomtatidze [16],
Gupta [13], Gupta and Trofimchuck [14], Ma [20-21], Bai and Fang [5], and Eloe
and Ahmad [11]. Eloe and Gao [12] discussed the quasilinearization method for
a three-point boundary value problem. Ahmad [2] developed the generalized
quasilinearization method for a general three-point nonlinear boundary value
problem.

In this paper, we consider a forced Duffing equation with nonlinear non-
local three-point mixed boundary conditions and develop a monotone itera-
tion scheme by relaxing the convexity assumption on the function involved
in the differential equation and the concavity assumption on nonlinearities in
the boundary conditions. In fact, we obtain monotone sequences of iterates
(approximate solutions) converging quadratically to the unique solution of the
three-point boundary value problem.

2. Preliminaries

We consider a three-point boundary value problem for the forced Duffing
equation with nonlocal conditions

(2.1) " + kz' + f(t,z) =0,

(22)  pz(0) — ¢2'(0) = g1(z(0)), pa(1) +2'(1) = g2(2(0)), 0 <o <1,

where f is continuous with f; < O on [0,1] x R, k € R such that £ # 0, p,q > 0
with p>1and g; : R — R, i = 1,2 are continuous.



MONOTONE ITERATION SCHEME 55
By Green’s function method, the solution, z(t) of (2.1)-(2.2) can be written as

_ (p — kq)e™* — pe=**
2t = o (x(a))[p[(p —kq)e~F — (p+ kQ)]]

(p+ kq) — pe™*
+ e B [ G (s a(o)as,

where
Gi(t,s)
pP—kq a_oguPtke 4
_ pek’s [—_6 ( )][*—-“—6 t]? 0<t<s,
kl(p = kq) = (P + kq)eF)] | (B=Rd _ ka-oqPERE _ ke o<y cn,
p P

We say that a € C?[0,1] is a lower solution of the boundary value problem
(2.1)-(2.2) if
o’ (t) + k' (t) + f(t,a(t)) >0, t €[0,1],
pe(0) — go/(0) < g1(e(0)), pa(l) + g (1) < g2(a(0)),
and B € C?[0,1] is an upper solution of (2.1)-(2.2) if
) <

B"(t) +kB'(t) + f(t,B() <0, te[0,1]
pB(0) — gB'(0) > 9:1(8(c)), B(1) + gB'(1) > ga(B(0)).

Now, we present comparison and existence results related to (2.1)-(2.2) which
play a pivotal role in proving the main result.

Theorem 2.1. Assume that f is continuous with f; <0 on [0,1] X R and g
is continuous on R satisfying a one-sided Lipschitz condition:

gi(z) —gily) < Li(z —y), 0< L; <1, i=1,2.

Let B and o be the upper and lower solutions of (2.1)-(2.2), respectively. Then
alt) < B(t), te[0,1]

Proof. Define h(t) = a(t)— 3(t). For the sake of contradiction, we suppose that
h(t) > 0 for some t € [0,1]. First we take ¢y € (0,1). Then by the definition of
lower and upper solutions and the assumption f, < 0, we obtain

R (to) + kR (to) = o (to) + ko (to) — B” (to) — kB’ (to)
2 — f(to, a(to)) + f(to, B(to)) > 0.

Now, employing a standard procedure [15] in the applications of upper and
lower solutions, let h(t) have a local positive maximum at o € (0,1), then
K (to) = 0 and A”(ty) < 0, which contradicts the above inequality. Thus, for
to € (0,1), we have a(t) < B(t). Now, suppose that h(t) has a local positive
maximum at ¢ = 1, then 2’'(1) = 0 and h”(1) < 0. On the other hand, using the
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definition of lower and upper solutions together with the fact that go satisﬁes_
a one sided Lipschitz condition, we find that

ph(1) +¢h'(1) = pa(l)+qa'(1) — (pB(1) +¢f'(1)) < g2(a(0)) — 92(B(0))
- < a( ) = B(o) = h(0),

Thus ph(1) < k(o) or h(1) < h(c) for p > 1, which is a contradiction. Similarly,
we get a contradiction for tg = 0. Hence we conclude that a(t) < S(t) on
(0, 1]. O

Theorem 2.2. Assume that f is continuous on [0,1] X R with f, < 0 and g;
are continuous on R satisfying one-sided Lipschitz condition:

gi(:c) —gi(y) < Li(.’): — y), 0< Ll’ <1, i= 1,2.

Further, we assume that there exist an upper solution B and a lower solution
a of (2.1)-(2.2) such that a(t) < B(t), t € [0,1]. Then there ezists a solution
x(t) of (2.1)-(2.2) satisfying a(t) < z(t) < B(t), t €[0,1].

Proof. Let us define F and G by
{ £(t,8) - 1555, if z(t) > B(1),
F(t,x)

f(t,z), if a(t) < z(t) < B(¢),

ft,a) — %, if z(t) < alt),

9i(z), ifalo) <z < PB(o),
gi{a(a)), if z < a(o),

gi(ﬁ(a))v ifz > ,8(0'),
gi(x) =
fori=1,2.
Since F'(t,z) and g;(x) are continuous and bounded, a standard application
of Schauder’s fixed point theorem ensures the existence of a solution, z of the
problem

2(8) + ka'(t) + F(t,3(8)) = 0, ¢ € [0,1],
pz(0) — g2'(0) = g1((0)), px(1) +q2'(1) = ga(x(0))-
In order to complete the proof, we need to show that a(t) < z(¢t) < B(¢) on

[0,1]. For that, we set h(t) = a(t) — z(t). For the sake of the contradiction, let
h(t) > 0 for some t € [0,1]. We define

to = inf{7 € [0,1] : h{r) > h(t),0 < ¢t < 1},

and note that 0 < tp by continuity. As §o satisfies a one-sided Lipschitz condi-
tion on [a(3), 8(3)], it follows that

ph(1) + ¢k (1) = pa(l) +¢o/(1) — (pe(1) + g2'(1)) < go(a(0)) — Go(2(0))
< (a(o) —z(0)) = h(o). :
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As in the proof of Theorem 2.1, let h(t) have a local maximum at ¢y, € (0,1)
implying that h'(tg) = 0 and h”(tp) < 0. On the other hand, by the definition
of upper and lower solutions together with the assumption Fy < 0, we have
h”(to) + khl(to) = a”(to) + kal(to) - ( “(to) + kwl(to))
> ——F(to, (to)) + F(to, .’E(to)) > 0.
This contradicts our supposition. Hence «(t) — z(t) < 0. Similarly, it can be
shown that z(t) < 8(t). Thus, it follows that a(t) < z(t) < 8(¢), t € [0,1]. O

3. Main result

Theorem 3.1. Assume that

(A1) o, fo are lower and upper solutions of (2.1)-(2.2), respectively.
(Ag) f(t,x) € C([0,1]x R) be such that fy < 0 and (foz(t, )+ ¢z (¢, 2)) > 0,
where ¢44(t,x) > 0 for some continuous function ¢(t,z) on [0,1] x R.
(Ag) Fori = 1,2, gi(x),gi(x),9/(x) are continuous on R with 0 < g} <1
and g{' (z)+; (x) < 0 with ¢} <0 on R for some continuous functions
Then there exist monotone sequences {an},{0n} that converge quadratically in
the space of continuous functions on [0, 1] to the unique solution z of (2.1)-(2.2).

Proof. Define F:[0,1] x R — R by
F(t,z) = f(t,z) + 6(t, z),
and G;: R — R by
Gi(z) = gi(z) + ¢i(x), 1 =1,2.

Using the generalized mean value theorem together with (Az) and (As), we
obtain

(3.1) ftz) 2 f(t,y) + Fu(t, v) (@ — y) + o(t, y) — 6(t, 2),
(3.2) 9:(z) < g:(y) + Gily) (& — y) + i (y) — ¥i(z), i =1,2.

Now, we set
F(t,.’t; O‘O) = f(t7o‘0) + Fz(t70‘0)(m - Oto) + ¢(ta aO) - d)(ta w)?
F(t,z; 00, 80) = f(t, Bo) + Fult, a0)(z — Bo) + ¢(t, Bo) — d(t, ),
and
hi(z(0); o0, Bo) = gi{ao(9)) + Gi(Bo(0))(2(0) — ao(0)) + ¥i(a0(0)) — i (2(0)),

hi((0); Bo) = :(Bo(0)) + G4(Bo(0))(z(0) — Bo()) + ¥i(Bo(0)) — ¥i(2(0)),
fori=1,2.
° We now consider the BVPs

(3.3) z"(t) + k' (t) + F(t, z;0) = 0, t € [0,1],
(3.4)  px(0) — g2'(0) = h1(2(0); @0, Bo), (1) + gz’ (1) = ha(z(0); a, Fo),
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and

(3.5) z"(t) + k2’ (t) + F(t,z;00,60) = 0, t € [0,1],

(36)  pa(0) — q2'(0) = ha(z(0), o), p(1) +¢a' (1) = ha(a(0), Bo).
Let us show that o and (3 are respectively lower and upper solutions of (3.3)-
(3.4). By definition of lower solution and the fact that F(t, ao; o) = f(¢, o),
we get
ag + kap + F(t, ao; ao) = oy + kag + f(t,a0) 2 0,
pao(0) — gap(0) < g1(ao(0)) = ha(ao(o); Oéo};ﬂo),
pao(1) + qap(1) < ga(ao(o)) = ha(ao(o); ao; Bo),
which implies that o is a lower solution of (3.3)-(3.4). Using (3.1) and the
definition of upper solution, we have
o + KBy + F(t, Bo; o)
= By +kBy + f(t o) + Fu(t,a0)(Bo — o) + (¢, ) — B(t, Bo)
< By + KBy + (£, Bo) <O

Using mean value theorem and the nonincreasing property of G/, we have
91(Bo(0)) — h1(Bo(o); a0, Bo)
= 61(Bo(0)) — g1(ao(0)) — G1(Bo(0))(Bo(0) — o (0))
—1(a0(0)) + 11(Bo(0))
G1(Bo(0)) — G1(ao(9)) = G1(Bo(0)){(Bo() — ao(0))
[G'(co) — G1(Bo(0))](Bo(0) — wo(0)) = O,

where ag(o) < ¢p £ Bo(o). Consequently, we have
PBo(0) = ¢B5(0) = ha(Bo(0); a0, Bo)-
Similarly, it can be shown that
pBo(1) +¢Bo(1) > ha(Bo(0); o, Bo)-

Thus, By is an upper solution of (3.3)-(3.4). Hence, by Theorem 2.2, there is a
solution a of (3.3)-(3.4) satisfying

(3.7) aolt) < ar(t) < Bolt), t € [0,1].

Note that Theorem 2.2 applies since h} = g;(Go(c)), i = 1,2. Similarly, B is
an upper solution of (3.5)-(3.6) as

F(t, Bo; o3 Bo) = f(t, Bo),
91(Bo(0)) = h1(Bo(a); Bo),
92(Bo(2)) = h2(Bo(0); Bo).-
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As before, using (3.1), we obtain
ag + kay + F(t, ap; ag, Bo)
= og + kag + f(t, Bo) + Fx(t, a0)(ao — Bo) + é(t, Bo) — b(t, o)
> ag +kay+ f(t,a0) > 0.

Now, we will show that pag(0) — gay(0) < hy(ao(0); Bo). By mean value theo-
rem, we find that

ha(cno(0); Bo) — g1(ao(0))
= 91(Bo(0)) + G1(Bo(0)
+¥1(Bo(0)) — Y1(ao(a)) — g( o(0))
= G1(Bo(0)) — Gi(ao(0)) + G1(Bo(0)) (a0 (o) =
= [Gi(a) = G1(Bo(9))
where ag(o) < ¢1 < Bo(o). Thus

pao(0) — qag(0) < g1(ao(0)) < ha(ao(0); o).
Similarly, it can be shown that
poo(1) + gap(1) < ha(o(a); Bo)-

Thus, ap is a lower solution of (3.5)-(3.6). Again, by Theorem 2.2, there exists
a solution B; of (3.5)-(3.6) such that :

(3.8) ag(t) < B1(t) < Bo(t), t €10,1].
Now, we show that a; < (37 , To do this we prove that ay,3; are lower and
upper solutions of (2.1)-(2.2), respectively. Using the fact that «; is a solution
of (3.3)-(3.4), we get
of (t) + koy (t) + f(t, 01)
> o] () +kei(t) + f(t, a0) + Fr(t, a0) (01 — ao) + b(t, a0) — 4(t, on)
of (t) + ko) (t) + F(t, 15 00) = 0.
Now, in view of nonincreasing property of G, we obtain
91(ea(0)) — [po1 (0) — qa (0)]
= gi{a1(0)) — g1(a0(0)) — G1(Bo(0))(a1(0) — ao(0))
=1 (ao(0)) + P1(as(o))
= [Gi(e2) — G1(Bo())](e1(0) — ao(o)) 2 0,
where ¢z € (ap(0), @1(0)), which in turn yields
pai1(0) — ¢a(0) < gi(a1(0))-
Similarly, it can be shown that pa; (1) + ¢ (1) < g2(1 (o). This implies that

oy is a lower solution of (2.1)-(2.2). Similarly, it can be shown that §; is an
upper solution of (2.1)-(2.2). By Theorem 2.1, it follows that

(3.9) on(t) < Bui(t), t€10,1].
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Combining (3.7), (3.8) and (3.9) yields
ag(t) < ar(t) < Bu(t) < Bo(t), t € [0,1].
Continuing this process, by induction, one can prove that

an(t) € ans1(t) < Bre1(t) < Bu(t), t€[0,1], n=0,1,...,
where o, satisfies the problem .

z"(t) + kz'(t) + F(t,z;0,) = 0, t € [0, 1].

pz(0) — qz'(0) = h1(2(0); an, Bn), (1) + qz'(1) = ha(z(0); an, Bn)
and B, satisfies the BVP

z(t) + kz'(t) + F(t, 200, 6,) = 0, t €[0,1],

px(0) — ¢z’ (0) = ha(2(0); Bn), p2(1) + g2’ (1) = ha(2(0); B)-
Since [0, 1] is compact and the convergence is monotone, it follows that the
convergence of each sequence {a,} and {3,} is uniform. Employing the stan-
dard arguments [15, 20}, we conclude that z is the limit point of each of the
two sequences and consequently, we get

(p — kq)e™® — pe~*t

(p — kg)e™® — (p + kq)]

(p + kg) — pe™** /1
+ 92(x(0))[p[(p iy kq)e‘k]] + A Gi(t,8)f(s,z(s))ds.
This proves that z is the unique solution of (2.1)-(2.2).

In order to prove that each of the sequences {ay,}, {8} converges quadrat-
ically, we set ¢, = B, —z > 0, p, = £ — a, > 0, where x denotes the unique
solution of (2.1)-(2.2). We only show the quadratic convergence with p, as the
details for the quadratic convergence for g, are similar. Applying the mean
value theorem, there exist o, < c3,¢4,¢5 <z and @, < {3 < 41 such that

z(t) = ¢ (fv(ff))[p[ ]

Pyt + kDpys
=— f(ta 5’3) + f(t, an)+ Fz(t’ an)(an+1 - an) + ¢(t, an) - ¢’(t7 Qnt1)
=~ fa(t,c3)(z — an) + Fo(t, an)(ant1 — 2+ 2 — an) — ¢2(t, (1) (ant1 — an)
= [=Fa(t,c3) + Fult, an) + du(t; c3) — ¢ (t, Q)pat[—Fo(t, an )}t ¢u (2, C1)lpn+1
2 [-F(t, @) + Fo(t, an) + ¢2(t, on) — ¢a(t, @)|pnt[—Fo (2, C1) + @2 (t: C1)]Pn+1
= = Fuo(t, ca)ps — ua(ts cs)pi — fz(t, (1)Pria
>~ M|pall?,

where A is a bound on ||Fy;||, B is a bound on ||¢,|| for t € [0,1] and M =
A+B. Here ||| denotes the supremum norm on C[0, 1]. Also there exist a,, (o) <
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c,71 < 7,2 <z < By and ap < (2,3 < (4, (5 < anyy such that

Prt1(t)

IA

IA

k kt

(p—kq)e™" — pe~
pl(p — kg)e™* — (p + kq)]

- — pe—Ft
+Hea(o(0) = ha(ans(@)ian, Sl ot P )

+ / Gi(t,)[f(5,) — P(5, anp1; a)ds

[01((0)) = 91 (en(0) = GL(Bu(0)) (@n41(0) — an(0))
(p — kq)e™* — pe~Ft

~r(en(@)) + (e n N G e g

+92(5(0)) = 92(0n(0) = G (Bn(0)) (@ 11(0) — an(0))

(p+ kg) — pe™™*
—1/)2(&,,,(0’)) + 1/)2(an-|‘1(()'))](p[(p_+_ kq) — (p — kq)e—k])

[91(2(9)) = ha(an+1(0); n, Ba)( )

)

1
—/0 Gr(t, 8)[pnr1 + kpny1lds
91 (c6)(z(0) — an(0)) — G1(Bn(0))(@n+1 — an(0))
, (p — kq)e™* —pe”™
+1/11(C2)(an.,_1(a) - an(a))](p[(p _ kq)e—k — (p + kq)]
+[95(r1)(#(0) = an(0)) = G3(Br(0)(Ons1 — an(0))

, B (p + kg) —pe™™
+3(¢3)(ant1(0) an(U))](p[(p+ kq) — (p — kq)e‘k])

)

[ Gt Nt + il

(Ghes) = Gh(B(0)) — (W} o) = b4 (C2)a(0)
G (Bn() ~ Y a0 (- BT TP
H(GAlre) = Gh(Bale)) = (4 (r2) — 4(a))puo)

-kt
+(G5(50(0)) = 5 () b the) —pe”

kt

)

(p+ kq) — (p — kq)e™¥]
1
M /0 IGi(t, 8)|ds

[~GY(c)(Bn(0) ~ c6)pn(0) — %7 (Ca)Pa(0)

, (p — kg)e™ — pe~
+gl(ﬂn(a))pn+1(a)](p[(p — kq)e—k: _ (p + kq)]

+[=G5(r2)(Bn(0) = 11)Pa(0) — %3 ((5)P7 (0)

, (p + kq) — pe™*
+g2(ﬁn(a))pn+l(0)](p[(p + kq) — (p — kq)e_k]

kt

)

) + Mi|pa||?
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IA

[~GY(er)(Bn(0) = an(0))palo) — ¥ (Ca)ph(o)

) (p — kq)e™® — pe~**
+gl (Bn(o-))pn-i-l(o-)](p[(p — kq)e_k — (p n kq)]
+[=G5(r2)(Bn(0) — an(0))pn(o) — 95 ((5)pa (o)

, (p+ kq) —pe” ™ 2
+92(/8n(0))pn+1(0)]( [(p n kq) — (p — kq)e—k]) + Mlllan
= [=G(c7)(gn(0) + Pn(0))pn(0) — ¥1 (Ca)P2(0)

, (p — kq)e™* — pe=**
B P e )
+[=G5(r2)(gn(0) + Pr(0))pn (o) — ¥5 (C5)p2(0)

, (p+ kq) — pe™* 2
+92(:8n(0))pn+1(0)](p[(p n kq) — (p — kq)e—k]) + M1||pn”

(N (563(0) + 572(0)) + 61 (Bu(0))Pass (0) + Dip(0)]Ny

HM(SG(0) + 392(0) + 65 (6n(0))Prsa (0) + Doy (0)]Ms + M

VAN

IN

[(gNl + Dl)pi(a) + %qﬁ(a) + X1Pnt1(0)| N2

3 M.
(M2 + D2)PA(0) + S2GE(0) + XaPusa(0))Ma + M lpu

IA

3 3
(§N1N2 + D1 Ny + -2~M2M3 + DyMs + M) ||pn ||

M.
H(ELN, + Z2M)lgnll + (A1 + Xo)

where |g| S AL <1, |ghl € A< 1, |GY| < Ny, |Gh| < Ma, |Y] < Dy, [¥5] <
—ka)e—* —pe—¥t k o=kt

Dy, |srge=—terran| < Mo lp[(pﬂf’;;f‘)@” w7l < Ms and M provides a

bound on Mfo1 |Gk (t, 8)|ds. Letting My = gN1N2+D1N2+ gM2M3+D2M3+

My, My = %INQ + MQZM;;, A = A1 + X2 and solving algebraically for ||pn+1]],

we obtain

IPrs1ll < 7= [Mallpall® + Msllga|”]

4. Concluding remarks

We have developed the generalized quasilinearization method for a nonlocal
three-point boundary value problem involving a forced Duffing equation. Sev-
eral interesting results can be recorded as a special case of the work established
in this paper, for example, if we take g, (z(0)) = a and g2(z(c)) = b (a and b are
constants), the problem corresponds to a two-point problem involving a forced
Duffing equation with separated boundary conditions. The classical method
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of quasilinearization for a forced Duffing equation with three-point nonlinear
boundary conditions can be recorded by taking ¢(t,z) = 0 and ¢¥;(z) = 0 in
the assumptions (Az) and (Asz) of Theorem 3.1.

References

[1] B. Ahmad, A guasilinearization method for a class of integro-differential equations with
mized nonlinearities, Nonlinear Analysis: Real World Appl. 7 (2006), 997-1004.

[2] , Monotone iteration scheme for general three-point nonlinear boundary value
problems, New Zealand J. Math. (to appear).

[3] B. Ahmad, A. Al-Saedi, and S. Sivasundaram, Approzimation of the solution of non-
linear second order integro-differential equations, Dynamic Systems Appl. 14 (2005),
253-263.

[4] B. Ahmad, J. J. Nieto, and N. Shahzad, The Bellman-Kalaba-Lakshamikantham quasi-
linearization method for Neumann problems, J. Math. Anal. Appl. 257 (2001), 356-363.

[6] C.Baiand J. Fang, Existence of multiple positive solutions for nonlinear m-point bound-
ary value problems, J. Math. Anal. Appl. 281 (2003), 76-85.

[6] R. Bellman, Methods of Nonlinear Analysis, Vol. 2, Academic Press, New York, 1973.

[7] R.Bellman and R. Kalaba, Quasilinearization and Nonlinear Boundary Value Problems,
Amer. Elsevier, New York, 1965.

[8] A. Buica, Quasilinearization for the forced Duffing equation, Studia Uni. Babe\C S-
Bolyia Math. 47 (2000), 21-29.

[9] A. Cabada and J. J. Nieto, Quasilinearization and rate of convergence for higher order
nonlinear periodic boundary value problems, J. Optim. Theory Appl. 108 (2001), 97—
107.

[10] W. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag,
NewYork/Berlin, 1971.

[11} P. W. Eloe and B. Ahmad, Positive solutions of a nonlinear nth order boundary value
problem with nonlocal conditions, Appl. Math. Lett. 18 (2005), no. 5, 521-527.

[12] P. Eloe and Y. Gao, The method of quasilinearization and a three-point boundary value
problem, J. Korean Math. Soc. 39 (2002), no. 2, 319-330.

[13] C. P. Gupta, A second order m-point boundary value problem at resonance, Nonlinear
Anal. 24 (1995), 1483-1489.

[14] C. P. Gupta and S. Trofimchuck, A priori estimates for the existence of a solution for
a multi-point boundary value problem, J. Inequal. Appl. 5 (2000), 351-365.

[15] L. Jackson, Boundary value problems for ordinary differential equations, Studies in
ordinary differential equations, pp. 93-127. Stud. in Math., Vol. 14, Math. Assoc. of
America, Washington, D.C., 1977.

[16] I. T. Kiguradze and A. G. Lomtatidze, On certain boundary value problems for second-
order linear ordinary differential equations with singularities, J. Math. Anal. Appl. 101
(1984), 325-347.

[17] V.Lakshmikantham, An extension of the method of quasilinearization, J. Optim. Theory
Appl. 82 (1994), 315-321.

, Further improvement of generalized gquasilinearization, Nonlinear Anal. 27
(1996), 223-227.

[19] V. Lakshmikantham and A. S.Vatsala, Generalized Quasilinearization for Nonlinear
Problems, Kluwer Academic Publishers, Dordrecht, 1998.

[20] E. S. Lee, Quasilinearization and Invariant Embedding, Academic Press, New York,
1968.

[21] R. Ma, Fzistence theorems for a second order three-point boundary value problem, J.
Math. Anal. Appl. 212 (1997), 430-442.

(18]



64 AHMED ALSAEDI

[22] , Existence and uniqueness of solutions to first-order three-point boundary value
problems, Appl. Math. Lett. 15 (2002), 211-216.

[23] V. B. Mandelzweig and F. Tabakin, Quasilinearization approach to nonlinear problems
in physics with application to nonlinear ODEs, Computer Physics Comm. 141 (2001),
268-281.

[24] J. J. Nieto and A. Torres, A nonlinear biomathematical model for the study of intracra-
nial aneurysms, J. Neurological Science 177 (2000), 18-23.

[25] S. Nikolov, S. Stoytchev, A. Torres, and J. J. Nieto, Biomathematical modeling and
analysis of blood flow in an intracranial aneurysms, Neurological Research 25 (2003),
497-504.

{26] 1. Yermachenko and F. Sadyrbaev, Quasilinearization and multiple solutions of the
Emden-Fowler type equation, Math. Model. Anal. 10 (2005), no. 1, 41-50.

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE, KING ABDUL AZzIZ UNIVERSITY
P.O. Box. 80257, JEDDAH 21589, SAUDI ARABIA
E-mail address: aalsaedi@hotmail.com



