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EXISTENCE AND NONEXISTENCE OF POSITIVE

SOLUTIONS TO NONLOCAL BOUNDARY VALUE

PROBLEMS WITH STRONG SINGULARITY

Chan-Gyun Kim

Abstract. In this paper, we consider φ-Laplacian nonlocal boundary

value problems with singular weight function which may not be in L1(0, 1).
The existence and nonexistence of positive solutions to the given problem

for parameter λ belonging to some open intervals are shown. Our approach

is based on the fixed point index theory.

1. Introduction

In this paper, we study the existence of positive solutions to the following
boundary value problem{

(w(t)φ(u′(t)))′ + λh(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) =
∫ 1

0
u(x)dα1(x), u(1) =

∫ 1

0
u(x)dα2(x),

(1)

where φ : R → R is an odd increasing homeomorphism, w ∈ C([0, 1], (0,∞)),
λ ∈ [0,∞) := R+ is a parameter, f ∈ C(R+,R+) with f(s) > 0 for s > 0,
h ∈ C((0, 1),R+), and the integrator functions αi (i = 1, 2) are nondecreasing
on [0, 1].

By a solution u to the problem (1), we mean u ∈ C1(0, 1) ∩ C[0, 1] with
wφ(u′) ∈ C1(0, 1) satisfies (1). Throughout this paper, the following hypotheses
are assumed, unless otherwise stated.

(H1) There exist increasing homeomorphisms ψ1, ψ2 : R+ → R+ such that

φ(x)ψ1(y) ≤ φ(yx) ≤ φ(x)ψ2(y) for all x, y ∈ R+. (2)

(H2) For i = 1, 2, α̂i := αi(1)− αi(0) ∈ [0, 1).

Let us introduce notations f0 := lim
s→0+

f(s)

φ(s)
, f∞ := lim

s→∞

f(s)

φ(s)
and, for an

increasing homeomorphism Θ on R+,
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DΘ :=
{
g ∈ C((0, 1),R+) :

∫ 1

0

∣∣∣Θ−1
(∫ 1

2

s
g(τ)dτ

)∣∣∣ ds <∞
}
.

It is well known that if an odd increasing homeomorphism φ satisfies the as-
sumption (H1), then

φ−1(x)ψ−1
2 (y) ≤ φ−1(xy) ≤ φ−1(x)ψ−1

1 (y) for all x, y ∈ R+ (3)

and L1(0, 1) ∩ C(0, 1) ⊆ Dψ1
⊆ Dφ ⊆ Dψ2

(see, e.g., ([8], Remark 1)). In
the main result (see Theorem 3.1 below), we assume that the weight function
h in the problem (1) is in Dψ1 , which implies that h may not be in L1(0, 1).
For example, let φ(x) = x + x2 for x ∈ R+ and define h : (0, 1) → R+ by
h(t) = t−α for t ∈ (0, 1). Then it is easy to check that (H1) is satisfied with
ψ1(y) = min{y, y2} and ψ2(y) = max{y, y2}. From the fact that ψ−1

1 (s) = s for
s ≥ 1, it follows that h ∈ Dψ1

\ L1(0, 1) for any α ∈ [1, 2).
The nonlocal boundary value problems play an important role in physics

and applied mathematics (see, e.g., [2, 6, 7]). The existence of solutions for
nonlocal boundary value problems have been studied widely. For example,
Liu [15] studied the following four-point boundary value problem{

u′′(t) + h(t)g1(u(t)) = 0, t ∈ (0, 1),
u(0) = µ0u(ξ0), u(1) = µ1u(ξ1),

(4)

which is a special case of the problem (1). Under various assumptions on the
nonlinearity g1, the existence of one or two positive solutions to the problem (4)
were shown. Webb and Infante [18], when φ(s) = s and w ≡ 1, presented some
sufficient conditions on the nonlinear term f = f(t, s) for the existence and
multiplicity of positive solutions to the problem (1) subject to several nonlocal
boundary conditions. Feng, Ge and Jiang [5] studied sufficient conditions on
the nonlinear term f = f(t, s) for the existence of multiple positive solutions to
the problem (1) subject to multi-point boundary conditions. Kim [10] improved
on the results in [5] under the assumption that the weight function h = h(t)
may not be in L1(0, 1). Cui [4], under the resonance conditions τ1τ2τ3τ4 ̸= 0 and
τ1τ4 − τ2τ3 = 0, gave some sufficient conditions for the existence of solutions to

the problem (1) with w ≡ 1, φ(s) = s and λ = 1. Here τ1 = 1−
∫ 1

0
(1−x)dα1(x),

τ2 =
∫ 1

0
xdα1(x), τ3 =

∫ 1

0
(1 − x)dα2(x) and τ4 = 1 −

∫ 1

0
xdα2(x). Note that if

α1(x) = α2(x) = x, then the assumption (H2) is not satisfied, but the above
resonance conditions are satisfied because τi =

1
2 for i = 1, 2, 3, 4. Bougoffa and

Khanfer [1] considered the following semilinear problem{
u′′(t) + g2(t, u(t)) = 0, t ∈ (0, 1),

u(0) =
∫ 1

0
m1(x)u(x)dx, u(1) =

∫ 1

0
m2(x)u(x)dx,

(5)

where g2 : [0, 1] × R → R is a given function and mi is an integrable function
on [0, 1] for i = 1, 2. The authors investigated the sufficient condition on g2 for
the uniqueness of solution to the problem (5). Son and Wang [16] studied the
existence and multiplicity of positive solutions to p-Laplacian systems subject
nonlinear boundary conditions. Recently, Kim ([13, 14]) proved the existence
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of one or two positive solutions to the problem (1) when f0 = β1 and f∞ = β2
for β1, β2 ∈ {0,∞}. For historical development of the theory of the problems
with nonlocal boundary conditions, we refer the reader to the survey papers
[3, 17, 19]. Motivated by the previous results mentioned above, we study the
existence and nonexistence of positive solutions to the problem (1) when either
f∞ ∈ (0,∞) and f0 ∈ {0,∞} or f0 ∈ (0,∞) and f∞ ∈ {0,∞} (see Theorem 3.1
below).

The rest of this paper is organized as follows. In Section 2, preliminary
results which are needed for proving the main result (Theorem 3.1) are provided.
In Section 3, the main result (Theorem 3.1) is stated and the proof of it is given.

2. Preliminaries

Throughout this section, we assume that (H1), (H2) and h ∈ Dφ \ {0} hold.
The usual maximum norm in a Banach space C[0, 1] is denoted by
∥u∥∞ := max

t∈[0,1]
|u(t)| for u ∈ C[0, 1], and let ah := inf{x ∈ (0, 1) : h(x) > 0},

bh := sup{x ∈ (0, 1) : h(x) > 0}, āh := sup{x ∈ (0, 1) : h(y) > 0 for all

y ∈ (ah, x)}, b̄h := inf{x ∈ (0, 1) : h(y) > 0 for all y ∈ (x, bh)}, c1h :=
1

4
(3ah+āh)

and c2h :=
1

4
(b̄h + 3bh). Then, since h ∈ C((0, 1),R+) \ {0}, we have two

cases: either 0 ≤ ah < āh ≤ b̄h < bh ≤ 1 or 0 ≤ ah = b̄h < bh ≤ 1 and
0 ≤ ah < āh = bh ≤ 1. Consequently,

h(t) > 0 for t ∈ (ah, āh) ∪ (b̄h, bh), and 0 ≤ ah < c1h < c2h < bh ≤ 1. (6)

Let rh := r1 min{c1h, 1− c2h} ∈ (0, 1), where

w0 := min
t∈[0,1]

w(t) > 0 and r1 := ψ−1
2

(
1

∥w∥∞

)[
ψ−1
1

(
1

w0

)]−1

∈ (0, 1].

Then P := {u ∈ C([0, 1],R+) : u(t) ≥ rh∥u∥∞ for t ∈ [c1h, c
2
h]} is a cone in

C[0, 1]. For m > 0, let Pm := {u ∈ P : ∥u∥∞ < m}, ∂Pm := {u ∈ P : ∥u∥∞ =
m} and Pm := Pm ∪ ∂Pm.

Let C1 := ψ−1
2

(
1

∥w∥∞

)
min

{∫ ch

c1
h

ψ−1
2

(∫ ch

s

h(τ)dτ

)
ds,

∫ c2h

ch

ψ−1
2

(∫ s

ch

h(τ)dτ

)
ds

}
and C2 := ψ−1

1

(
1

w0

)
max

{
A1

∫ ch

0

ψ−1
1

(∫ ch

s

h(τ)dτ

)
ds,A2

∫ 1

ch

ψ−1
1

(∫ s

ch

h(τ)dτ

)
ds

}
.

Here, ch :=
c1h + c2h

2
and Ai := (1 − α̂i)

−1 > 0 for i = 1, 2. Clearly, by (6),

C1 > 0 and C2 > 0. Define continuous functions f∗, f
∗ : (0,∞) → (0,∞) by

f∗(m) := min{f(z) : rhm ≤ z ≤ m} and f∗(m) := max{f(z) : 0 ≤ z ≤ m} for
m ∈ (0,∞).

Define R1, R2 : (0,∞) → (0,∞) by

R1(s) :=
1

f∗(s)
φ

(
s

C1

)
and R2(s) :=

1

f∗(s)
φ

(
s

C2

)
for s ∈ (0,∞).
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Remark 1. (i) By (3) and (H2), ψ
−1
2 (z) ≤ ψ−1

1 (z) for all z ∈ R+ and
Ai = (1− α̂i)

−1 ≥ 1 for i = 1, 2. Thus, 0 < C1 < C2 and

0 < R2(s) < R1(s) for all s ∈ (0,∞). (7)

(ii) For any L ∈ C((0,∞), (0,∞)), let Lc := lim
s→c

L(s)

φ(s)
for c ∈ {0,∞}. Then

it is well known that (f∗)c = (f∗)c = 0 if fc = 0 , and (f∗)c = (f∗)c =
∞ if fc = ∞ (see, e.g., [11, Remark 2]). For i ∈ {1, 2}, it follows from
(3) that

lim
s→0

Ri(s) = ∞ if f0 = 0, and lim
s→∞

Ri(s) = ∞ if f∞ = 0; (8)

lim
s→0

Ri(s) = 0 if f0 = ∞, and lim
s→∞

Ri(s) = 0 if f∞ = ∞. (9)

For k ∈ Dφ, consider the following problem{
(w(t)φ(u′(t)))′ + k(t) = 0, t ∈ (0, 1),

u(0) =
∫ 1

0
u(x)dα1(x), u(1) =

∫ 1

0
u(x)dα2(x).

(10)

Define T : Dφ → C[0, 1] by T (0) = 0 and for k ∈ Dφ \ {0},

T (k)(t) =

{
A1

∫ 1

0

∫ x
0
Ik(s, σ)dsdα1(x) +

∫ t
0
Ik(s, σ)ds, if 0 ≤ t ≤ σ,

−A2

∫ 1

0

∫ 1

x
Ik(s, σ)dsdα2(x)−

∫ 1

t
Ik(s, σ)ds, if σ ≤ t ≤ 1,

where Ik(s, y) := φ−1

(
1

w(s)

∫ x

s

k(τ)dτ

)
for s, y ∈ (0, 1) and σ = σ(k) is a

constant satisfying

A1

∫ 1

0

∫ x

0

Ik(s, σ)dsdα1(x) +

∫ σ

0

Ik(s, σ)ds

= −A2

∫ 1

0

∫ 1

x

Ik(s, σ)dsdα2(x)−
∫ 1

σ

Ik(s, σ)ds. (11)

For any k ∈ Hφ and any σ satisfying (11), T (k) is monotone increasing on [0, σ)
and monotone decreasing on (σ, 1]. We notice that σ = σ(k) is not necessarily
unique, but T (k) is independent of the choice of σ satisfying (11) (see [9, Remark
2]).

Lemma 2.1. ([9, Lemma 2]) Assume that (H1), (H2) and k ∈ Dφ hold. Then
T (k) is a unique solution to the problem (10) satisfying the following properties:

(i) T (k)(t) ≥ min{T (k)(0), T (k)(1)} ≥ 0 for t ∈ [0, 1];
(ii) for any k ̸≡ 0, max{T (k)(0), T (k)(1)} < ∥T (k)∥∞;
(iii) σ is a constant satisfying (11) if and only if T (k)(σ) = ∥T (k)∥∞;
(iv) T (k)(t) ≥ r1 min{t, 1− t}∥T (k)∥∞ for t ∈ [0, 1] and T (k) ∈ P.

Define a function G : R+ × P → C(0, 1) by G(λ, u)(t) := λh(t)f(u(t)) for
(λ, u) ∈ R+ × P and t ∈ (0, 1). Clearly, G(λ, u) ∈ Dφ for any (λ, u) ∈ R+ × P,
since h ∈ Dφ. Let us define an operator H : R+ × P → P by
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H(λ, u) := T (G(λ, u)) for (λ, u) ∈ R+ × P.

By Lemma 2.1 (iv), H(R+ × P) ⊆ P, and consequently H is well defined.
Moreover, u is a solution to the problem (1) if and only if H(λ, u) = u for some
(λ, u) ∈ R+ × P.

Lemma 2.2. ([12, Lemma 4]) Assume that (H1), (H2) and h ∈ Dφ \ {0} hold.
Then the operator H : R+ × P → P is completely continuous.

Theorem 2.3. ([14, Theorem 3.3]) Assume that (H1), (H2) and h ∈ Dψ1
\ {0}

hold. Assume, in addition, that there exist m1 and m2 such that 0 < m2 < m1

(resp., 0 < m1 < m2) and R1(m1) < R2(m2). Then the problem (1) has a
positive solution u = u(λ) satisfying m2 < ∥u∥∞ < m1 (resp., m1 < ∥u∥∞ <
m2) for any λ ∈ (R1(m1), R2(m2)).

3. Main result

In this section, we state and prove the main result of this paper.

Theorem 3.1. Assume that (H1), (H2) and h ∈ Dψ1
\ {0} hold.

(i) If f0 = 0 and f∞ ∈ (0,∞), then there exist positive constants λ∗

and λ such that the problem (1) has a positive solution u(λ) for any
λ ∈ (λ∗,∞) satisfying ∥uλ∥∞ → 0 as λ → ∞, and it has no positive
solutions for λ ∈ (0, λ).

(ii) If f0 = ∞ and f∞ ∈ (0,∞), then there exist positive constants λ∗ and
λ such that the problem (1) has a positive solution u = u(λ) for any
λ ∈ (0, λ∗) satisfying ∥uλ∥∞ → 0 as λ → 0, and it has no positive
solutions for λ ∈ (λ,∞).

(iii) If f0 ∈ (0,∞) and f∞ = 0, then there exist positive constants λ∗1 and
λ1 such that the problem (1) has a positive solution u(λ) for any λ ∈
(λ∗1,∞) satisfying ∥uλ∥∞ → ∞ as λ → ∞, and it has no positive
solutions for λ ∈ (0, λ1).

(iv) If f0 ∈ (0,∞) and f∞ = ∞, then there exist positive constants λ1∗ and
λ1 such that the problem (1) has a positive solution u = u(λ) for any
λ ∈ (0, λ1∗) satisfying ∥uλ∥∞ → ∞ as λ → 0, and it has no positive
solutions for λ ∈ (λ1,∞).

Proof. We only give the proofs of (i) and (ii), since (iii) and (iv) can be proved
in a similar manner.

(i) Since f0 = 0, by (8),

Ri(m) → ∞ as m→ 0 for i = 1, 2. (12)

From the definition of R1 and (2), it follows that

lim
m→∞

R1(m) ≥ lim
m→∞

φ(mC1
)

f(m)
≥ lim
m→∞

φ(m)

f(m)
ψ1(

1

C1
) =

1

f∞
ψ1(

1

C1
) > 0.
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Thus, there exists λ∗ := inf{R1(m) : m ∈ (0,∞)} ∈ (0,∞). For any λ ∈
(λ∗,∞), by (7) and (12), there exist mλ

1 and mλ
2 such that 0 < mλ

2 < mλ
1 and

R1(m
λ
1 ) < λ < R2(m

λ
2 ). By Theorem 2.3, there exists a positive solution uλ to

the problem (1) satisfying mλ
2 < ∥uλ∥∞ < mλ

1 . Moreover, since Ri(m) → ∞ as
m → 0 for i = 1, 2, we may choose mλ

1 and mλ
2 satisfying 0 < mλ

2 < mλ
1 and

mλ
1 → 0 as λ → ∞. Consequently, we can choose positive solutions uλ to the

problem (1) for all large λ > 0 satisfying ∥uλ∥∞ → 0 as λ→ ∞.
Now we prove the nonexistence of positive solutions to the problem (1). Let

λ > 0 be a constant for which the problem (1) has a positive solution u. Since
f0 = 0 and f∞ ∈ (0,∞), there exists M1 > 0 such that f(s) ≤ M1φ(s) for s ∈
R+. Thus,

f(u(t)) ≤M1φ(u(t)) ≤M1φ(u(σ)) for all t ∈ [0, 1]. (13)

Here σ is a constant satisfying u(σ) = ∥u∥∞. We only consider the case σ ≤ ch,
since the proof for the case σ > ch is similar. First we prove

u(σ) ≤ A1

∫ σ

0

IG(λ,u)(s, σ)ds, (14)

where IG(λ,u)(s, σ) = φ−1
(

1
w(s)

∫ σ
s
λh(τ)f(uλ(τ))dτ

)
. Indeed, from the facts

that IG(λ,u)(s, σ) ≥ 0 for s ≤ σ and IG(λ,u)(s, σ) ≤ 0 for s ≥ σ, it follows that∫ 1

0

∫ r

σ

IG(λ,u)(s, σ)dsdα1(r)

= −
∫ σ

0

∫ σ

r

IG(λ,u)(s, σ)dsdα1(r) +

∫ 1

σ

∫ r

σ

IG(λ,u)(s, σ)dsdα1(r) ≤ 0.

Then

u(σ) = A1

∫ 1

0

∫ r

0

IG(λ,u)(s, σ)dsdα1(r) +

∫ σ

0

IG(λ,u)(s, σ)ds

= A1

[∫ 1

0

∫ r

0

IG(λ,u)(s, σ)dsdα1(r) +

(
1−

∫ 1

0

dα1(r)

)∫ σ

0

IG(λ,u)(s, σ)ds

]
= A1

[∫ 1

0

∫ r

σ

IG(λ,u)(s, σ)dsdα1(r) +

∫ σ

0

IG(λ,u)(s, σ)ds

]
≤ A1

∫ σ

0

IG(λ,u)(s, σ)ds,

and thus (14) is proved. From (14) and (13), it follows that

u(σ) ≤ A1

∫ σ

0

φ−1

(
1

w(s)

∫ σ

s

λh(τ)f(u(τ))dτ

)
ds

≤ A1

∫ ch

0

φ−1

(∫ ch

s

h(τ)dτw−1
0 λM1φ(u(σ))

)
ds

≤ C0φ
−1(w−1

0 λM1φ(u(σ))) ≤ C0ψ
−1
1 (w−1

0 λM1)u(σ).
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Here C0 := max

{
A1

∫ ch

0

ψ−1
1

(∫ ch

s

h(τ)dτ

)
ds,A2

∫ 1

ch

ψ−1
1

(∫ s

ch

h(τ)dτ

)
ds

}
> 0.

Then λ ≥ w0M
−1
1 ψ1(C

−1
0 ) =: λ. Consequently, the problem (1) has no positive

solutions for all λ ∈ (0, λ).
(ii) Since f0 = ∞, by (2) and (9), Ri(m) → 0 as m → 0 for i = 1, 2. From

the definition of R2 and (2), it follows that

lim
m→∞

R2(m) ≤ lim
m→∞

φ(mC2
)

f(m)
≤ lim
m→∞

φ(m)

f(m)
ψ2(

1

C2
) =

1

f∞
ψ2(

1

C2
) > 0.

Thus, there exists λ∗ := sup{R2(m) : m ∈ (0,∞)} ∈ (0,∞). For any λ ∈
(0, λ∗), there exist mλ

1 and mλ
2 such that 0 < mλ

1 < mλ
2 and R1(m

λ
1 ) < λ <

R2(m
λ
2 ). By Theorem 2.3, there exists a positive solution uλ to problem (1)

satisfying mλ
1 < ∥uλ∥∞ < mλ

2 . Moreover, since Ri(m) → ∞ as m → 0 for
i = 1, 2, we may choose mλ

1 and mλ
2 satisfying 0 < mλ

1 < mλ
2 and mλ

2 → 0 as
λ → ∞. Consequently, we can choose positive solutions uλ to the problem (1)
for all small λ > 0 satisfying ∥uλ∥∞ → 0 as λ→ 0.

Now we prove the nonexistence of positive solutions to the problem (1). Let
λ > 0 be a constant for which the problem (1) has a positive solution u. Since
f0 = ∞ and f∞ ∈ (0,∞), there exists M2 > 0 such that

f(s) > M2φ(s) for s ∈ R+. (15)

Let σ be a constant satisfying u(σ) = ∥u∥∞. We only consider the case σ ≥ ch,
since the proof for the case σ < ch is similar. Since u is monotone increasing on
[0, σ], u(t) ≥ u(c1h) for t ∈ [c1h, σ]. By (15), f(u(t)) > M2φ(u(c

1
h)) for t ∈ [c1h, ch].

Then, by (3),

u(c1h) ≥
∫ c1h

0

φ−1

(
1

w(s)

∫ σ

s

λh(τ)f(u(τ))dτ

)
ds

≥
∫ c1h

0

φ−1

(∫ ch

c1h

h(τ)dτ∥w∥−1
∞ λM2φ(u(c

1
h))

)
ds

≥
∫ c1h

0

ψ−1
2

(∫ ch

c1h

h(τ)dτ

)
dsφ−1(∥w∥−1

∞ λM2φ(u(c
1
h)))

≥ C1ψ
−1
2 (∥w∥−1

∞ λM2)u(c
1
h),

where C1 := min

{∫ c1h

0

ψ−1
2

(∫ ch

c1
h

h(τ)dτ

)
ds,

∫ 1

c2
h

ψ−1
2

(∫ c2h

ch

h(τ)dτ

)
ds

}
> 0. Then

λ ≤ ∥w∥∞M−1
2 ψ2(C

−1
1 ) =: λ. Consequently, the problem (1) has no positive

solutions for λ ∈ (λ,∞). □
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