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EXISTENCE AND UNIQUENESS THEOREMS OF

SECOND-ORDER EQUATIONS WITH INTEGRAL

BOUNDARY CONDITIONS

Lazhar Bougoffa and Ammar Khanfer

Abstract. In this paper, we consider the second-order nonlinear differ-
ential equation with the nonlocal boundary conditions. We first reformu-

late this boundary value problem as a fixed point problem for a Fredholm

integral equation operator, and then present a result on the existence and
uniqueness of the solution by using the contraction mapping theorem.

Furthermore, we establish a sufficient condition on the functions µ and
hi, i = 1, 2 that guarantee a unique solution for this nonlocal problem in

a Hilbert space. Also, accurate analytic solutions in series forms for this

boundary value problems are obtained by the Adomian decomposition
method (ADM).

1. Introduction

The theory of boundary-value problems with integral boundary conditions
for ordinary differential equations arises in different areas of applied mathe-
matics and physics. For example, heat conduction, chemical engineering, un-
derground water flow, thermo-elasticity, and plasma physics can be reduced to
the nonlocal problems with integral boundary conditions [8–14, 17–23]. This
problem is used in different areas of physics, engineering and mathematics such
as plate deflection theory.

Many authors have studied the second-order nonlinear differential equation
under various boundary conditions and by different approaches [9–11, 20–23]
and the references therein.

Consider the second-order boundary value problem with integral boundary
conditions

(1) −u′′(x) = f(x, u(x)), 0 < x < 1,

(2) u(0) =

∫ 1

0

h1(x)u(x)dx, u(1) =

∫ 1

0

h2(x)u(x)dx,
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where f : [0, 1] × R → R is a given function and hi : [0, 1] → R, i = 1, 2 are
integrable functions on [0, 1].

In this paper, we first reformulate this boundary value problem as a fixed
point problem for a Fredholm integral equation operator, and then present a
result on the existence and uniqueness of the solution by using the contraction
mapping theorem. Furthermore, we establish a sufficient condition on the
functions µ and hi, i = 1, 2 that guarantee a unique solution for Pr. (1)-
(2) in a Hilbert space. Also, the existence and accurate analytic solutions in
series forms for this boundary value problems are obtained by the Adomian
decomposition method (ADM) [1–7,15,16].

2. The existence and uniqueness theorem

We will use the following lemma to reformulate the transformed boundary
value problem Pr. (1)-(2) as a fixed point problem for Fredholm integral equa-
tion.

Lemma 2.1. Let g : [0, 1]→ R be a continuous function. The unique solution
u of the following boundary value problem with nonlocal boundary conditions

(3)


−u′′(x) = g(x),

u(0) =

∫ 1

0

h1(x)u(x)dx and u(1) =

∫ 1

0

h2(x)u(x)dx

is given by

(4) u(x) =

∫ 1

0

G1(x, y)g(y)dy,

where

(5) G1(x, y) = G(x, y) +H1 +H2 + (1− x)H3 + (1− x)H4,

where

G(x, y) =

{
x(1− y), 0 ≤ x ≤ y ≤ 1,
y(1− x), 0 ≤ y ≤ x ≤ 1,

(6)

(7) H1 =
[1−

∫ 1

0
sh2(s)ds]

∫ 1

0
h1(s)[

∫ 1

0
G(s, y)g(y)dy]ds

κ
,

H2 =

∫ 1

0
sh1(s)ds

∫ 1

0
h2(s)[

∫ 1

0
G(s, y)g(y)dy]ds

κ
,(8)

H3 =
(1−

∫ 1

0
(1− s)h1(s)ds)

∫ 1

0
h2(s)[

∫ 1

0
G(s, y)g(y)dy]ds

κ
,(9)

H4 =

∫ 1

0
sh1(s)ds

∫ 1

0
h2(s)[

∫ 1

0
G(s, y)g(y)dy]ds

κ
(10)
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and
(11)

κ = [1−
∫ 1

0

(1−s)h1(s)ds][1−
∫ 1

0

sh2(s)ds]−
∫ 1

0

sh1(s)ds

∫ 1

0

(1−s)h2(s)ds 6= 0.

Proof. Integrating the first equation of (3) twice, we obtain

(12) u(x) = C1x+ C2 −
∫ x

0

∫ y

1

g(s)dsdy,

where C1 = u′(1) is a constant to be determined later and C2 = u(0). Integra-
tion by parts of the integral with respect to y in Eq. (12) gives

(13) u(x) = C1x+ C2 + x

∫ 1

x

g(y)dy +

∫ x

0

yg(y)dy.

We determine C1 and C2 from the nonlocal boundary conditions (2), we obtain

(14) C1 = −
∫ 1

0

yg(y)dy +

∫ 1

0

[h2(y)− h1(y)]u(y)dy

and

(15) C2 =

∫ 1

0

h1(y)u(y)dy.

Substituting Eqs. (14)-(15) into Eq. (13) we obtain

u(x) =

(
−
∫ 1

0

yg(y)dy +

∫ 1

0

(h2(y)− h1(y))u(y)

)
x+

∫ 1

0

h1(y)u(y)dy

+ x

∫ 1

x

g(y)dy +

∫ x

0

yg(y)dy.(16)

It follows that

u(x) =

∫ x

0

(1− x)yg(y)dy +

∫ 1

x

x(1− y)g(y)dy

+

∫ 1

0

[xh2(y) + (1− x)h1(y)]u(y)dy,(17)

that is,

(18) u(x) =

∫ 1

0

G(x, y)g(y)dy +

∫ 1

0

[xh2(y) + (1− x)h1(y)]u(y)dy.

Multiplying both sides of Eq. (18) by h1 and integrate over [0, 1], we obtain∫ 1

0

h1(s)u(s)ds =

∫ 1

0

h1(s)

[∫ 1

0

G(s, y)g(y)dy

]
ds

+

∫ 1

0

h1(s)

[∫ 1

0

[sh2(y) + (1− s)h1(y)]u(y)dy

]
ds.(19)
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Thus (
1−

∫ 1

0

(1− s)h1(s)ds

)∫ 1

0

h1(s)u(s)ds(20)

=

∫ 1

0

h1(s)

[∫ 1

0

G(s, y)g(y)dy

]
ds+

∫ 1

0

yh1(y)dy

∫ 1

0

h2(s)u(s)ds.

Similarly, multiplying both sides of Eq. (18) by h2 and integrate over [0, 1], we
obtain (

1−
∫ 1

0

sh2(s)ds

)∫ 1

0

h2(s)u(s)ds(21)

=

∫ 1

0

h2(s)

[∫ 1

0

G(s, y)g(y)dy

]
ds+

∫ 1

0

(1− y)h2(y)dy

∫ 1

0

h1(s)u(s)ds.

Solving Eq. (20) and Eq. (21) for
∫ 1

0
h1(s)u(s)ds and

∫ 1

0
h2(s)u(s)ds, to get∫ 1

0

h1(s)u(s)ds =
[1−

∫ 1
0
sh2(s)ds]

∫ 1
0
h1(s)[

∫ 1
0
G(s,y)g(y)dy]ds

[1−
∫ 1
0
(1−s)h1(s)ds][1−

∫ 1
0
sh2(s)ds]−

∫ 1
0
sh1(s)ds

∫ 1
0
(1−s)h2(s)ds

+
∫ 1
0
sh1(s)ds

∫ 1
0
h2(s)[

∫ 1
0
G(s,y)g(y)dy]ds

[1−
∫ 1
0
(1−s)h1(s)ds][1−

∫ 1
0
sh2(s)ds]−

∫ 1
0
sh1(s)ds

∫ 1
0
(1−s)h2(s)ds

(22)

and∫ 1

0

h2(s)u(s)ds =
(1−

∫ 1
0
(1−s)h1(s)ds)

∫ 1
0
h2(s)[

∫ 1
0
G(s,y)g(y)dy]ds

[1−
∫ 1
0
(1−s)h1(s)ds][1−

∫ 1
0
sh2(s)ds]−

∫ 1
0
sh1(s)ds

∫ 1
0
(1−s)h2(s)ds

+
∫ 1
0
(1−s)h2(s)ds

∫ 1
0
h1(s)[

∫ 1
0
G(s,y)g(y)dy]ds

[1−
∫ 1
0
(1−s)h1(s)ds][1−

∫ 1
0
sh2(s)ds]−

∫ 1
0
sh1(s)ds

∫ 1
0
(1−s)h2(s)ds

.(23)

Substituting these into Eq. (18), we obtain

u(x) =

∫ 1

0

G(x, y)g(y)dy

+
(1−

∫ 1
0
(1−s)h1(s)ds)

∫ 1
0
h2(s)[

∫ 1
0
G(s,y)g(y)dy]ds

[1−
∫ 1
0
(1−s)h1(s)ds][1−

∫ 1
0
sh2(s)ds]−

∫ 1
0
sh1(s)ds

∫ 1
0
(1−s)h2(s)ds

+
∫ 1
0
(1−s)h2(s)ds

∫ 1
0
h1(s)[

∫ 1
0
G(s,y)g(y)dy]ds

[1−
∫ 1
0
(1−s)h1(s)ds][1−

∫ 1
0
sh2(s)ds]−

∫ 1
0
sh1(s)ds

∫ 1
0
(1−s)h2(s)ds

+ (1− x)
[1−

∫ 1
0
sh2(s)ds]

∫ 1
0
h1(s)[

∫ 1
0
G(s,y)g(y)dy]ds

[1−
∫ 1
0
(1−s)h1(s)ds][1−

∫ 1
0
sh2(s)ds]−

∫ 1
0
sh1(s)ds

∫ 1
0
(1−s)h2(s)ds

+ (1− x)
∫ 1
0
sh1(s)ds

∫ 1
0
h2(s)[

∫ 1
0
G(s,y)g(y)dy]ds

[1−
∫ 1
0
(1−s)h1(s)ds][1−

∫ 1
0
sh2(s)ds]−

∫ 1
0
sh1(s)ds

∫ 1
0
(1−s)h2(s)ds

,

which is what we had to prove. �

Lemma 2.2. The nonlocal boundary value problem Pr. (1)-(2) can be written
as a Fredholm integral equation for u,

(24) u =

∫ 1

0

G1(x, y)f(y, u(y))dy.

Proof. Replacing g(x) by f(x, u(x)) in Lemma 2.1, we obtain Eq. (24). �
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Theorem 2.3. Suppose that f(x, u) is continuous on [0, 1]×R and there is a
continuous function µ : [0, 1]→ R+ such that

(25) | f(x, y)− f(x, z) |≤ µ(x) | y − z |,∀ y, z ∈ R, x ∈ [0, 1].

Moreover, we assume

(26) sup
0≤x≤1

∫ 1

0

| G1(x, y) | µ(y)dy < 1,

where G1(x, y) is defined by (5). Then the nonlocal boundary value problem
Pr. (1)-(2) has a unique solution.

Proof. The integral equation (24) may be written as a fixed point equation
T (u) = u, where the map T is defined by

(27) Tu(x) =

∫ 1

0

G1(x, y)f(y, u(y))dy.

We show T is a contraction, since for any v, w ∈ C([0, 1]), we have

‖ Tv − Tw ‖∞ = sup
0≤x≤1

|
∫ 1

0

G1(x, y) [f(y, v(y))− f(y, w(y))] dy |

≤ sup
0≤x≤1

∫ 1

0

| G1(x, y) || f(y, v(y))− f(y, w(y)) | dy

≤‖ u− v ‖∞ sup
0≤x≤1

∫ 1

0

| G1(x, y)µ(y) | dy

≤ c ‖ v − w ‖∞,(28)

where

(29) c = sup
0≤x≤1

∫ 1

0

| G1(x, y) | µ(y)dy < 1.

Thus T is a contraction and from the contraction mapping theorem, T has a
unique fixed point, i.e., there exists a unique u ∈ C([0, 1]) such that Tu = u.
This fixed point u is a unique solution of this problem. �

3. The uniqueness solution in an Hilbert space

The generalization of the result on the uniqueness of the solution of Pr. (1)-
(2) can be obtained in the Hilbert space U defined as

(30) U =

{
u : u,

√
x(1− x)

du

dx
,
d2u

dx2
∈ L2(0, 1)

}
with respect to the norm

(31) ‖ u ‖2U=

∫ 1

0

[
u2 + x(1− x)(

du

dx
)2 + (

d2u

dx2
)2
]
dx <∞.
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Suppose there are two solutions u and v such that u 6= v. Then from Eq. (1)
with (2), we have

(32) −w′′ = f(x, u)− f(x, v), 0 < x < 1

subject to

(33) w(0) =

∫ 1

0

h1(x)w(x)dx, w(1) =

∫ 1

0

h2(x)w(x)dx,

where w = u− v.
Multiplying both sides of Eq. (32) by ϕ(x)w, where ϕ(x) = x(x − 1). Em-

ploying integration by parts, we obtain∫ 1

0

ϕ′′(x)w2(x)dx− 2

∫ 1

0

ϕ(x)w′2(x)dx(34)

= ϕ′(1)w2(1)− ϕ′(0)w2(0)− 2

∫ 1

0

g(x, u, v)ϕ(x)w(x)dx,

where g(x, u, v) = f(x, u)− f(x, v) and |g(x, u, v)| ≤ µ(x)|w|.
Replacing ϕ(x) = x(x− 1), ϕ′(x) = 2x− 1 and ϕ′′(x) = 2 into Eq. (34) and

taking into account the nonlocal boundary conditions (2), we get

2

∫ 1

0

w2(x)dx+ 2

∫ 1

0

x(1− x)w′2(x)dx(35)

= (

∫ 1

0

h1(x)w(x)dx)2+(

∫ 1

0

h2(x)w(x)dx)2+2

∫ 1

0

g(x, u, v)x(1−x)w(x)dx.

From the Holder inequality, we have

(36) (

∫ 1

0

hi(x)w(x)dx)2 ≤
∫ 1

0

h2i (x)dx

∫ 1

0

w2(x)dx, i = 1, 2.

Since max0≤x≤1 x(1− x) = 1
4 , Eq. (35) becomes

2

∫ 1

0

w2(x)dx+ 2

∫ 1

0

x(1− x)w′2(x)dx ≤ (‖ h1 ‖2 + ‖ h2 ‖2)

∫ 1

0

w2(x)dx

+
1

4

∫ 1

0

µ(x)w2(x)dx,(37)

where ‖ hi ‖2=
∫ 1

0
h2i (x)dx, i = 1, 2.

If we assume that µ(x) ≤ µ0,∀ x ∈ [0, 1]. Then,

(38)
(

2− µ0

4
− (‖ h1 ‖2 + ‖ h2 ‖2)

)∫ 1

0

w2(x)dx+2

∫ 1

0

x(1−x)w′2(x)dx ≤ 0.

Multiplying now both sides of Eq. (32) by w′′, we obtain

(39)

∫ 1

0

w′′2(x)dx = −
∫ 1

0

g(x, u, v)w′′(x)dx.
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The term
∫ 1

0
g(x, u, v)w′′(x)dx can be estimated by means of the Cauchy-

Schwarz-Bunyakovski inequality and the ε-inequality

(40) 2 | uv |≤ εu2 +
1

ε
v2, ε > 0.

Thus

(41)

∫ 1

0

w′′2(x)dx ≤ 1

2ε1

∫ 1

0

| g(x, u, v) |2 dx+
ε1
2

∫ 1

0

w′′2(x)dx, ε1 > 0.

Therefore

(42) (1− ε1
2

)

∫ 1

0

w′′2(x)dx ≤ 1

2ε1

∫ 1

0

µ2(x)w2(x)dx, ε1 > 0.

If we choose ε1 = 1, then

(43)

∫ 1

0

w′′2(x)dx ≤ µ2
0

∫ 1

0

w2(x)dx.

Adding side to side Eq. (38) and Eq. (43), we obtain(
2− µ0

4
− µ2

0 − (‖ h1 ‖2 + ‖ h2 ‖2)
)∫ 1

0

w2(x)dx

+ 2

∫ 1

0

x(1− x)w′2(x) +

∫ 1

0

w′′2(x)dx ≤ 0.(44)

Choosing

(45)
µ0

4
+ µ2

0+ ‖ h1 ‖2 + ‖ h2 ‖2< 2.

Then

(46)

∫ 1

0

[
w2 + x(1− x)

(
dw

dx

)2

+

(
d2w

dx2

)2
]
dx ≤ 0,

that is

(47) ||w||U ≤ 0.

This is a contradiction.
We have proved the following statement.

Theorem 3.1. Under the hypotheses of Theorem 2.3, and if we assume µ(x) ≤
µ0,∀ x ∈ [0, 1] with (45). Then Pr. (1)-(2) has a unique solution in the Hilbert
space U.
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4. Approximate analytic solution by the Adomian decomposition
method (ADM)

We propose here to solve this nonlocal boundary value problem by the Ado-
mian decomposition method (ADM) [1–7,15,16].

Let us consider the case f(x, u(x)) = µ(x)f(u(x)) and assume f(0) 6= 0. We
rewrite the equivalent Eq. (24) in Adomian’s operator-theoretic notation as

(48) Lu = Ru+Nu,

where

(49) Lu = u, Ru = 0 and Nu =

∫ 1

0

G1(x, y)µ(x)f(u(y))dy.

Define the solutions u(x) by its respective infinite series of components in the
form

(50) u(x) =

∞∑
n=0

un(x)

and the infinite series

(51) N(u) =

∞∑
n=0

An(u0, u1, . . . , un)

for the nonlinear term N(u), where the An are the Adomian polynomials [1–3,
15,16], which can be obtained from the definitional formula

(52) An =
1

n!

dn

dλn

[
f

(
n∑
i=0

λi ui

)]
λ=0

, n = 0, 1, 2, . . . .

Consequently, the components un can be elegantly determined by setting the
following recursion scheme

(53)


u0 = 0,

un+1 =

∫ 1

0

G1(x, y)µ(x)An(y)dy, n ≥ 0.

Let Φn(x) =
∑n−1
i=0 ui(x) be the n th-stage approximation functions of u(x) by

the ADM for the nonlinear Eq. (24).
By substitution the recursion scheme (53) into this sum, we obtain

(54)


Φ0(x) = 0,

Φn(x) =

∫ 1

0

G1(x, y)µ(x)f(Φn−1(y))dy, n ≥ 1.

Let us prove the following results on the convergence of the Adomian decom-
position method.



EXISTENCE AND UNIQUENESS THEOREMS OF SECOND-ORDER EQUATIONS 907

Theorem 4.1. Let (Φn) be a sequence defined by (54). Then limn→∞ Φn(x) =
u(x) and

(55) ‖ Φn − u ‖∞≤ cn
1

1− c
‖ Φ1 − Φ0 ‖∞,

where u(x) satisfies the Fredholm integral equation

(56) u =

∫ 1

0

G2(x, y)f(u(y))dy, G2(x, y) = µ(x)G1(x, y).

Proof. We show that (Φn) is a contractive sequence.

‖ Φn+2 − Φn+1 ‖∞ = sup
0≤x≤1

|
∫ 1

0

G2(x, y) [f(Φn+1(y))− f(Φn(y))] dy |

≤ sup
0≤x≤1

∫ 1

0

| G2(x, y) || f(Φn+1(y))− f(Φn(y)) | dy

≤‖ Φn+1 − Φn ‖∞ sup
0≤x≤1

∫ 1

0

| G2(x, y)µ(y) | dy

≤ c ‖ Φn+1 − Φn ‖∞ .(57)

If m > n, say m = n+ p, p = 1, 2, . . . , then

‖ Φn+p − Φn ‖∞≤ ‖ Φn − Φn−1 ‖∞ + ‖ Φn−1 − Φn−2 ‖∞
+ · · ·+ ‖ Φn+1 − Φn ‖∞

≤ cn(1 + c+ c2 + · · ·+ cp−1 + cp + · · · ) ‖ Φ1 − Φ0 ‖∞ .(58)

Thus

(59) ‖ Φn+p − Φn ‖∞≤ cn
1

1− c
‖ Φ1 − Φ0 ‖∞ .

As n,m = n + p → ∞, we see that ‖ Φn+p − Φn ‖∞→ 0, that is (Φn) is a
Cauchy sequence in the Banach space (C([0, 1]), ‖ · ‖∞). Hence, it must be
convergent, say limn→∞Φn(x) = u(x).

By taking the limit in (59) as p→∞, we obtain the desired inequality (55).
It remains to verify that u is a solution

‖ u−
∫ 1

0

G2(x, y)f(u(y))dy ‖∞

≤ ‖ u− Φn ‖∞ + ‖ Φn −
∫ 1

0

G2(x, y)f(Φn−1(y))dy ‖∞

+ ‖
∫ 1

0

G2(x, y)[f(u(y))− f(Φn−1(y))]dy ‖∞ .(60)

Since limn→∞Φn(x) = u(x), we conclude that u satisfies Eq. (56). �
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5. Application

Consider the second-order nonlinear differential equation with the nonlocal
boundary conditions

−u′′(x) = 2(1 + x(1− x))
1

1+ | u |
, 0 < x < 1,(61)

u(0) = 0, u(1) =

∫ 1

0

(2x− 1)u(x)dx.(62)

Here h1(x) = 0, h2(x) = (2x − 1), µ(x) = 2(1 + x(1 − x) and f(x, u) =
2(1 + x(1− x) 1

1+|u| . This function satisfies the condition (25), with

(63) | f(x, u)− f(x, v) |≤ µ(x) | u− v |,∀ u, v ∈ R, x ∈ [0, 1].

Since

(64) µ(x) | 1
1+|u| −

1
1+|v| |= µ(x) 1

(1+|u|)(1+|v|) | u− v |≤ µ(x) | u− v | .

A simple calculation leads to

(65) sup
0≤x≤1

∫ 1

0

G(x, y)dy =
1

8
, ∀ (x, y) ∈ [0, 1]× [0, 1],

(66)

‖ h1 ‖L1= 0, ‖ h2 ‖L1=

∫ 1

0

| h2(x) | dx =
1

3
, µ0 =

5

2
, | 1−

∫ 1

0

h2(s)ds |= 2

3

and

c = sup
0≤x≤1

∫ 1

0

| G1(x, y) | µ(y)dy

< sup
0≤x≤1

∫ 1

0

| G(x, y) | dy ‖ µ ‖∞

(
1 +

‖ h2 ‖L1

| 1−
∫ 1

0
h2(s)ds |

)
< 1.(67)

Theorem 3.1 implies that there is a unique solution to this problem, which is
given as u(x) = x(1− x).

The recursion scheme (53) produces a rapidly convergent series as

u0 = 0,

u1 =

∫ x

0

(1− x)yµ(y)A0(y)dy +

∫ 1

x

x(1− y)µ(y)A0(y)dy +

∫ 1

0

(2y − 1)u0(y)dy,

u2 =

∫ x

0

(1− x)yµ(y)A1(y)dy +

∫ 1

x

x(1− y)µ(y)A1(y)dy +

∫ 1

0

(2y − 1)u1(y)dy,

u3 =

∫ x

0

(1− x)yµ(y)A2(y)dy +

∫ 1

x

x(1− y)µ(y)A2(y)dy +

∫ 1

0

(2y − 1)u2(y)dy,

· · ·
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where the Adomian polynomials Ak, for k ≥ 0, for the nonlinear term N(u) =
1

1+u are given as

A0 = f(u0),

A1 = u1f
′(u0),

A2 = u2f
′(u0) +

1

2
u21f

′′(u0),

A3 = u3f
′(u0) + u1u2f

′′(u0) +
1

3!
u31f

′′′(u0),

A4 = u4f
′(u0) + [

1

2
u22 + u1u3]f ′′(u0) +

1

2
u21u2f

′′′(u0) +
1

4!
u41f

′′′′(u0),

....

This in turn gives the following solution components

u0 = 0,

u1 = 7
6 x− x

2 − 1
3 x

3 + 1
6 x

4,

u2 = − 121
504 x+ 7

18 x
3 + 1

36 x
4 − 1

4 x
5 + 1

18 x
6 + 1

42 x
7 − 1

168 x
8,

u3 = 2921
24948 x−

121
1512 x

3 − 269
1008 x

4 + 269
1680 x

5 + 7
27 x

6 − 38
189 x

7

− 5
168 x

8 + 433
9072 x

9 − 89
22680 x

10 − 17
5544 x

11 + 17
33264 x

12,

u4 = − 26787731
363242880 x+ 2921

74844 x
3 + 33793

299376 x
4 + 73391

498960 x
5 − 14969

45360 x
6 − 3169

19845 x
7

+ 2453
5880 x

8 − 1901
25920 x

9 − 947
6804 x

10 + 26947
498960 x

11 + 6151
427680 x

12 − 118441
12972960 x

13

+ 5303
45405360 x

14 + 79
166320 x

15 − 79
1330560 x

16,

· · · .

The fifth-stage approximate solution is therefore given as

φ(x) =

4∑
i=0

ui

= x(1−x)
1089728640 [64701x14 − 452907x13 − 580179x12 + 9368865x11

− 6860803x10 − 62371531x9 + 93576261x8 + 121486143x7

− 294204561x6 + 72964527x5 + 89517063x4 + 27176967x3

− 16910713x2 − 32773833x+ 1056954807].

In order to verify the accuracy of our proposed approach, we compare the
approximate solution obtained by the ADM with the exact solution u(x) =
x(1−x). The approximate analytic solution obtained by the ADM for the 5th-
stage approximation of u(x) has been plotted in Figure 1. The comparison
indicates a good agreement between the approximate solution obtained by this
new variation of the Adomian decomposition method and the exact solution.
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Figure 1. Red color is the exact solution and Green color is
the approximate solution φ(x).
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