• Title/Summary/Keyword: nonlinear two point boundary value problems

Search Result 27, Processing Time 0.025 seconds

THE CONVERGENCE OF FINITE DIFFERENCE APPROXIMATIONS FOR SINGULAR TWO-POINT BOUNDARY VALUE PROBLEMS

  • Lee, H.Y.;Seong, J.M.;Shin, J.Y.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.299-316
    • /
    • 1999
  • We consider two finite difference approxiamations to a singular boundary value problem arising in the study of a nonlinear circular membrane under normal pressure. It is shown that the rates of convergence are O(h) and O($h^2$), respectively. An iterative scheme is introduced which converges to the solution of the finite difference equations. Finally the numerical experiments are given

  • PDF

The Numerical Solution of Time-Optimal Control Problems by Davidenoko's Method (Davidenko법에 의한 시간최적 제어문제의 수치해석해)

  • Yoon, Joong-sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.57-68
    • /
    • 1995
  • A general procedure for the numerical solution of coupled, nonlinear, differential two-point boundary-value problems, solutions of which are crucial to the controller design, has been developed and demonstrated. A fixed-end-points, free-terminal-time, optimal-control problem, which is derived from Pontryagin's Maximum Principle, is solved by an extension of Davidenko's method, a differential form of Newton's method, for algebraic root finding. By a discretization process like finite differences, the differential equations are converted to a nonlinear algebraic system. Davidenko's method reconverts this into a pseudo-time-dependent set of implicitly coupled ODEs suitable for solution by modern, high-performance solvers. Another important advantage of Davidenko's method related to the time-optimal problem is that the terminal time can be computed by treating this unkown as an additional variable and sup- plying the Hamiltonian at the terminal time as an additional equation. Davidenko's method uas used to produce optimal trajectories of a single-degree-of-freedom problem. This numerical method provides switching times for open-loop control, minimized terminal time and optimal input torque sequences. This numerical technique could easily be adapted to the multi-point boundary-value problems.

  • PDF

EIGENVALUE PROBLEMS FOR SYSTEMS OF NONLINEAR HIGHER ORDER BOUNDARY VALUE PROBLEMS

  • Rao, A. Kameswara;Rao, S. Nageswara
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.711-721
    • /
    • 2010
  • Values of the parameter $\lambda$ are determined for which there exist positive solutions of the system of boundary value problems, $u^{(n)}+{\lambda}p(t)f(\upsilon)=0$, $\upsilon^{(n)}+{\lambda}q(t)g(u)=0$, for $t\;{\in}\;[a,b]$, and satisfying, $u^{(i)}(a)=0$, $u^{(\alpha)}(b)=0$, $\upsilon^{(i)}(a)=0$, $\upsilon^{(\alpha)}(b)=0$, for $0\;{\leq}\;i\;{\leq}\;n-2$ and $1\;{\leq}\;\alpha\;\leq\;n-1$ (but fixed). A well-known Guo-Krasnosel'skii fixed point theorem is applied.

EXISTENCE RESULTS FOR ANTI-PERIODIC BOUNDARY VALUE PROBLEMS OF NONLINEAR SECOND-ORDER IMPULSIVE qk-DIFFERENCE EQUATIONS

  • Ntouyas, Sotiris K.;Tariboon, Jessada;Thiramanus, Phollakrit
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.335-350
    • /
    • 2016
  • Based on the notion of $q_k$-derivative introduced by the authors in [17], we prove in this paper existence and uniqueness results for nonlinear second-order impulsive $q_k$-difference equations with anti-periodic boundary conditions. Two results are obtained by applying Banach's contraction mapping principle and Krasnoselskii's fixed point theorem. Some examples are presented to illustrate the results.

QUALITATIVE ANALYSIS FOR FRACTIONAL-ORDER NONLOCAL INTEGRAL-MULTIPOINT SYSTEMS VIA A GENERALIZED HILFER OPERATOR

  • Mohammed N. Alkord;Sadikali L. Shaikh;Saleh S. Redhwan;Mohammed S. Abdo
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.537-555
    • /
    • 2023
  • In this paper, we consider two types of fractional boundary value problems, one of them is an implicit type and the other will be an integro-differential type with nonlocal integral multi-point boundary conditions in the frame of generalized Hilfer fractional derivatives. The existence and uniqueness results are acquired by applying Krasnoselskii's and Banach's fixed point theorems. Some various numerical examples are provided to illustrate and validate our results. Moreover, we get some results in the literature as a special case of our current results.

NONLINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER IN A HILBERT SPACE

  • Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • v.16 no.1
    • /
    • pp.91-101
    • /
    • 2008
  • Let H be a Hilbert space. Assume that $0{\leq}{\alpha}$, ${\beta}{\leq}1$ and r(t) > 0 in I = [0, T]. By means of the fixed point theorem of Leray-Schauder type the existence principles of solutions for two point boundary value problems of the form $\array{(r(t)x^{\prime}(t))^{\prime}+f(t,x(t),r(t)x^{\prime}(t))=0,\;t{\in}I\\x(0)=x(T)=0}$ are established where f satisfies for positive constants a, b and c ${\mid}{f(t,x,y){\mid}{\leq}a{\mid}x{\mid}^{\alpha}+b{\mid}y{\mid}^{\beta}+c\;\;for\;all(t,x,y){\in}I{\times}H{\times}H$.

  • PDF

Isogeometric analysis of gradient-enhanced damaged plasticity model for concrete

  • Xu, Jun;Yuan, Shuai;Chen, Weizhen
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.171-188
    • /
    • 2019
  • This study proposed a new and efficient 2D damage-plasticity model within the framework of Isogeometric analysis (IGA) for the geometrically nonlinear damage analysis of concrete. Since concrete exhibits complicated material properties, two internal variables are introduced to measure the hardening/softening behavior of concrete in tension and compression, and an implicit gradient-enhanced formulation is adopted to restore the well-posedness of the boundary value problem. The numerical results calculated by the model is compared with the experimental data of three benchmark problems of plain concrete (three-point and four-point bending single-notched beams and four-point bending double-notched beam) to illustrate the geometrical flexibility, accuracy, and robustness of the proposed approach. In addition, the influence of the characteristic length on the numerical results of each problem is investigated.

GENERALISED COMMON FIXED POINT THEOREM FOR WEAKLY COMPATIBLE MAPPINGS VIA IMPLICIT CONTRACTIVE RELATION IN QUASI-PARTIAL Sb-METRIC SPACE WITH SOME APPLICATIONS

  • Lucas Wangwe;Santosh Kumar
    • Honam Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.1-24
    • /
    • 2023
  • In the present paper, we prove common fixed point theorems for a pair of weakly compatible mappings under implicit contractive relation in quasi-partial Sb-metric spaces. We also provide an illustrative example to support our results. Furthermore, we will use the results obtained for application to two boundary value problems for the second-order differential equation. Also, we prove a common solution for the nonlinear fractional differential equation.

POSITIVE SOLUTIONS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS WITH ONE-DIMENSIONAL p-LAPLACIAN OPERATOR

  • Xu, Fuyi;Meng, Zhaowei;Zhao, Wenling
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.457-469
    • /
    • 2008
  • In this paper, we study the existence of positive solutions for the following nonlinear m-point boundary value problem with p-Laplacian: $\{{{{(\phi_p(u'))'\;+\;f(t,u(t))=0, \;0<t<1,} \atop u'(0)={\sum}{^{m-2}_{i=1}}\;a_iu'(\xi_i),} \atop u(1)={\sum}{^k_{i=1}}\;b_iu(\xi_i)\;-\;{\sum}{^s_{i=k+1}}\;b_iu(\xi_i)\;-\;{\sum}{^{m-2}_{i=s+1}}\;b_iu'(xi_i),}$ where ${\phi}_p(s)$ is p-Laplacian operator, i.e., ${\phi}_p(s)=\mid s\mid^{p-2}s$, p>1, ${\phi}_q\;=\;({\phi}_p)^{-1}$, $\frac{1}{p}+\frac{1}{q}=1$, $1\;{\leq}\;k\;{\leq}\;s\;{\leq}m\;-\;2$, $b_i\;{\in}\;(0,+{\infty})$ with $0\;<\;{\sum}{^k_{k=1}}\;b_i\;-\;{\sum}{^s_{i=k+1}}\;b_i\;<\;1$, $0\;<\;{\sum}{^{m-2}_{i=1}}\la_i\;<\;1$, $0\;<\;{\xi}_1\;<\;{\xi}_2\;<\;{\cdots}\;<\;{\xi}_{m-2}\;<\;1$, $f\;{\in}\;C([0,\;1]\;{\times}\;[0,\;+{\infty}),\;[0,\;+{\infty}))$. We show that there exists one or two positive solutions by using fixed-point theorem for operator on a cone. The conclusions in this paper essentially extend and improve the known results.

  • PDF