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GENERALISED COMMON FIXED POINT THEOREM FOR

WEAKLY COMPATIBLE MAPPINGS VIA IMPLICIT

CONTRACTIVE RELATION IN QUASI-PARTIAL Sb-METRIC

SPACE WITH SOME APPLICATIONS

Lucas Wangwe and Santosh Kumar∗

Abstract. In the present paper, we prove common fixed point theorems

for a pair of weakly compatible mappings under implicit contractive re-

lation in quasi-partial Sb-metric spaces. We also provide an illustrative
example to support our results. Furthermore, we will use the results

obtained for application to two boundary value problems for the second-

order differential equation. Also, we prove a common solution for the
nonlinear fractional differential equation.

1. Introduction

In 1906, Fréchet [20] introduced the study of sets of elements in abstract
spaces. In 1922, Banach [10] proved a fixed point theorem using the concept
of abstract spaces. This theorem gave an iterative procedure to find the fixed
point and is famously known as the Banach contraction principle. The Banach
contraction principle has several applications in nonlinear analysis and pure and
applied mathematics. Researchers have generalised these results by refining
the contraction conditions and replacing metric spaces with a more generalised
abstract space.

1976, Jungck [33] initiated the concept of commuting mappings and proved
fixed points results in metric space. Jungck [34] extended the concept of com-
muting mapping to compatible mappings and proved common fixed points
results on metric spaces. Sessa [58] proved the results on a weak commuta-
tivity condition of mappings in fixed point considerations. Kaneko and Sessa
[35] extended the concept of compatible mappings due to Jungck [33] to in-
clude multi-valued mappings as well as single-valued mappings. Moreover,
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they proved coincidence and fixed point theorems for hybrid pairs of compati-
ble mappings. For more literature, we refer the reader to [1, 25, 47, 35, 61] and
the reference cited therein.

Similarly, Czerwik [17] established b-metric spaces by weakening the triangle
inequality coefficient and generalising Banach’s contraction principle to these
spaces. Since then, several papers have been published on the fixed point
theory of various classes of the single and multi-valued map in b-metric space.
Aydi et al. [8] proved a common fixed points via implicit contractions on
b-metric-like spaces. Aydi et al. [7] proved a fixed point theorem for set-
valued quasi-contractions in b-metric spaces. For more details, one can see in
[16, 38, 39, 41, 56] and the references therein.

Likewise, Matthew [42] introduced non-zero self-distance, which is applied in
computer networking, data structure, and computer programming languages.
The non-self distance generalises the metric to partial metric axioms, accom-
modating both metric and topological properties of abstract spaces. Some of
these properties are complete spaces, Cauchy sequences and contraction fixed
point theorem, which generalises the Banach contraction principle.

On the other hand, Popa [53] introduced the concept of implicit functions
and proved the results for contractive mapping, whose strength lies in producing
many contractions. Several researchers are working in this area. For more
details, we refer the readers to [3, 4, 6, 8, 11, 12, 19, 30, 31, 47, 50, 51, 52, 54,
55, 62] and the references cited therein.

Moreover, Sedghi et al. [57] gave a generalisation of D-metric space and
G-metric space to S-metric space. Since then, several researchers have been
working on generalising the results using different contraction conditions in
S-metric space. For more detail, one can see [5, 15, 40, 46, 59, 60] and the
references therein. Nizar and Nabil [45] proved a fixed point theorem in Sb-
metric spaces. Nizar [44] proved the results on a fixed point in partial Sb-metric
spaces. Later, Mlaiki et al. [43] proved fixed point theorem for α-ψ-contractive
mapping in Sb-metric spaces.

Motivated by Matthew [42], Karapinar [37] initiated the concept of quasi-
partial metric space and discussed the existence of fixed points of self-mapping
for this Space. Gupta and Gautam [26, 28] further generalised the quasi-partial
metric Space to the class of quasi-partial b-metric spaces. Recently, Gautam
and Verma [21] discussed fixed point results via implicit mapping in quasi-
partial b-metric space. Gautam et al. [24] proved an interpolative Chatterjea
and cyclic Chatterjea contraction on quasi-partial b-metric space. Gupta and
Gautam [27] proved the topological structure of quasi-partial b-metric spaces.
Gautam et al. [23] gave proof of common fixed point results on generalised weak
compatible mapping in quasi-partial b-metric space. Aydi et al. [7] proved a
fixed point theorem for set-valued quasi-contractions in b-metric spaces. Gau-
tam et al. [22] proved fixed point of interpolative Rus-Reich-Ćirić contraction
mapping on rectangular quasi-partial b-metric space.
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This paper is motivated by the results of Gautam and Verma [21], and Nizar
[44]. We prove common fixed point theorems for weakly compatible mappings
satisfying an implicit relation in the quasi-partial Sb-metric space setting and
obtain coincidence and a unique common fixed point of such mappings. Some
examples are provided to verify the validity of our results. Finally, a solution
to the second-order differential equation’s two boundary value problem and
the existence of a common solution of the Caputo-type fractional differential
equation will be discussed.

We describe some definitions and theorems, which will help to develop our
main results.

The property of quasi-partial b-metric space introduced in [26] is as follows:

Definition 1.1. [26] A quasi-partial b-metric space on a non empty set X
is a mapping qpb : X ×X → R+ such that for some real number s ≥ 1 and all
u, v, z ∈ X:

(QPb1): qpb(u, u) = qpb(u, v) = qpb(v, v) ⇒ u = v;
(QPb2): qpb(u, u) ≤ qpb(u, v);
(QPb3): qpb(u, u) ≤ qpb(v, u); and
(QPb4): qpb(u, v) ≤ s[qpb(u, z) + qpb(v, z)]− qpb(z, z).

A quasi-partial b-metric space is a pair (X, qpb) such that X is a non-empty
set and (X, qpb) is a quasi partial b-metric on X. The number s is called the
coefficient of (X, qpb).

For a quasi-partial b-metric space (X, qpb), the function dqpb : X×X → R+

defined by dqpb
(u, v) = qpb(u, v) + qpb(v, u)− qpb(u, u)− qpb(v, v) is a b-metric

on X.

Lemma 1.2. [26] Every quasi-partial metric pace is a quasi-partial b-metric
space, but the converse need not be true.

Lemma 1.3. [26] Let (X, qpb) be a quasi-partial b-metric space and (X, dqpb
)

be the corresponding b-metric space. Then (X, dqpb
) is complete if (X, qpb) is

complete.

Examples of quasi-partial b-metric space are given in [26], and [21].
In 2012, Sedghi et al. [57] gave a generalisation of D-metric Space and

G-metric Space to S-metric space by formulating its properties as follows:

Definition 1.4. [57] Let X be a non-empty set. A S-metric on X is a
function S : X ×X ×X → [0,∞) that satisfies the following conditions for all
u, v, z, a ∈ X.

(S1): S(u, v, z) ≥ 0;
(S2): S(u, v, z) = 0 if and only if u = v = z; and
(S3): S(u, v, z) ≤ S(u, u, a) + S(v, v, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.
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Motivated by the results of Czerwik [17] and sedghi et al. [57], Nizar and
Nabil [45] introduced the notion of Sb-metric space.

Definition 1.5. [45] Let X be a non-empty set and let s ≥ 1 be a given
number. A function Sb : X × X × X → [0,∞) is said to be Sb-metric if and
only if for all u, v, z, t ∈ X the following conditions hold:

(S1): Sb(u, v, z) = 0, if and only if u = v = z;
(S2): Sb(u, u, v) = Sb(v, v, u) for all u, v ∈ X; and
(S3): Sb(u, v, z) ≤ s[Sb(u, u, t) + Sb(v, v, t) + Sb(z, z, t)].

The pair (X,Sb) is called an Sb-metric space.

Inspired by Nizar [44], Nizar and Nabil [45], and Gautam and Verma [21],
we introduce the concept of quasi partial Sb-metric space as follows:

Definition 1.6. A quasi-partial Sb-metric space on a non empty set X is
a mapping Sqpb

: X ×X ×X → R+ such that for some real number s ≥ 1 and
all u, v, z ∈ X:

(QPSb1): Sqpb
(u, u, u) = Sqpb

(u, v, z) = Sqpb
(v, v, y) ⇒ u = v = z;

(QPSb2): Sqpb
(u, u, v) = Sqpb(v, v, u);

(QPSb2): Sqpb
(u, u, u) ≤ Sqpb

(u, u, v); and
(QPSb4): Sqpb

(u, v, z) ≤ s[Sqpb
(u, u, t)+Sqpb

(v, v, t)+Sqpb
(z, z, t)]−Sqpb

(t, t, t).

A quasi-partial Sb-metric space is a pair (X,Sqpb
) such that X is a non-empty

set and (X,Sqpb
) is a quasi partial Sb-metric on X. The number s is called the

coefficient of (X,Sqpb
).

For a quasi-partial Sb-metric space (X,Sqpb
), the function dSqpb

: X ×X ×
X → R+ defined by dSqpb

(u, u, v) = Sqpb
(u, u, v)+Sqpb

(v, v, u)−Sqpb
(u, u, u)−

Sqpb
(v, v, v, ) is a Sqpb

-metric on X.
The following are fundamental convergence properties of quasi- partial Sb-

metric spaces.

Definition 1.7. Let (X,Sqpb
) be a quasi-partial Sb-metric space, then:

(i): a sequence {un} ⊂ X converges to a point u ∈ X if and only if

Sqpb
(u, u, u) = lim

n→∞
Sqpb

(un, un, u) = lim
n→∞

Sqpb
(u, u, un),

(ii): a sequence {un} of elements of X is called a Cauchy sequence if and
only if

lim
n,m→∞

Sqpb
(un, un, um) and lim

n,m→∞
Sqpb

(um, um, un)

exists and is finite,
(iii): the quasi-partial Sb-metric space (X,Sqpb

) is said to be complete if
every Cauchy sequence {un} ⊂ X converges to a point u ∈ X such that

lim
n,m→∞

Sqpb
(un, un, um) = lim

n,m→∞
Sqpb

(um, um, un) = Sqpb
(u, u, u).
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Lemma 1.8. Let (X,Sqpb
) be a quasi-partial b-metric space. Then the

following holds:

(i): If Sqpb
(u, u, u) = 0, then u = v.

(ii): If u ̸= v, then Sqpb
(u, u, v) > 0 and Sqpb

(v, v, u) > 0.

From, Sedghi et al. [57], we proved the following lemma to satisfy quasi-
partial Sb-metric space.

Lemma 1.9. In a Sqpb
-metric space, we have

Sqpb
(u, u, v) = Sqpb

(v, v, u).

Proof. By condition (QPSb4) of Definition 1.6 and x = t we get

Sqpb
(u, u, v) ≤ s[Sqpb

(u, u, t) + Sqpb
(u, u, t) + Sqpb(v, v, t)]− Sqpb

(t, t, t)

≤ s[0 + 0 + Sqpb
(v, v, t)]− 0

= sSqpb(v, v, t).(1)

Similarly,

Sqpb
(v, v, u) ≤ s[Sqpb

(v, v, t) + Sqpb
(v, v, t) + Sqpb(u, u, t)]− Sqpb

(t, t, t)

≤ s[0 + 0 + Sqpb
(xu, u, t)]− 0

= sSqpb
(u, u, t).(2)

Consequently, by (1) and (2) as a results

Sqpb
(u, u, t) = Sqpb

(v, v, t).

Example 1.10. Let X = [0, 1]. Define Sqpb
: X × X × X → R+ as

Sqpb
(u, v, z) = (u− v)2 + (v − z)2 + u+ v. It is easy to show that (X,Sqpb

) is
a quasi-partial Sb-metric space.

By (QPSb1), for u = v = z we have Sqpb
(u, u, u) = Sqpb

(v, v, v) = Sqpb
(z, z, z)

Sqpb
(u, u, u) ≤ (u− v)2 + (v − z)2 + u+ v,

= (u− u)2 + (u− u)2 + u+ u,

= 2u.

By (QPSb2), for all u, v ∈ X we have

Sqpb
(u, u, v) ≤ (u− u)2 + (u− v)2 + u+ u,

= (u− v)2 + u+ u,

= u2 − 2uv + v2 + 2u,

and

Sqpb
(v, v, u) ≤ (v − v)2 + (v − u)2 + v + v,

= (v − u)2 + v + v,

= v2 − 2uv + u2 + 2v,
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hence, v2 − 2uv + v2 + 2u = v2 − 2uv + x2 + 2v.
Similar, (QPSb3) follows from (QPSb2) and (QPSb1)

2u ≤ u2 − 2uv + v2 + 2u.

Consequently, by (QPSb4), we get

Sqpb
(u, u, t) = (u− t)2 + 2u,

Sqpb(v, v, t) = (v − t)2 + 2v,

Sqpb
(z, z, t) = (z − t)2 + 2z.

Combining all the above equalities using (QPSb4), we obtain

(u− v)2 + (v − z)2 + u+ v ≤ s[(u− t)2 + 2u+ (v − t)2 + 2v]− ((z − t)2 + 2z),

thus, all axioms are satisfied. Hence (X,Sqpb
) is complete.

Furthermore, Abbas and Jungck [1] and Pathak [48] gave the following
definition for a unique common fixed point notion.

Definition 1.11. [1, 48]

(i): Let S and A be self maps of a set X. If u∗ = Su = Au for some u in
X, then u is called a coincidence point of S and A, and u∗ is called a
point of coincidence of S and A.

(ii): Let S and A be weakly compatible self maps of a setX, we have Su∗ =
SAu = ASu = Au∗. If S and A have a unique point of coincidence
u∗ = Su = Au, then u∗ is the unique common fixed point of S and A.

2. Implicit mapping and related notion

In 2021, Gautam and Verma [21] proved the results for fixed point the-
orems of mappings satisfying implicit contractive relation in quasi-partial b-
metric Space. They considered the family FQ of all lower semi-continuous real
functions F : R5

+ → R+ and the following conditions:

(F1): F is non-increasing in the t1 and t5 variable;
(F2): for all q, r ≥ 0, there exist h ∈ [0, 1) such that F (q, r, r, q, s(q+r)) ≤ 0

implies q ≤ hr;
(F3): F (t, t, 0, 0, t) > 0 for all t > 0.

We give some examples of functions that satisfy the above implicit relation
conditions.

Example 2.1. The function of F ∈ FQ satisfies the properties (F1) - (F3)
(see, [21] ).

(1): F (t1, t2, t3, t4, t5) = t1 − αmax{t2, t3, t4, t5}, where α ∈ [0, 1
2s );

(2): F (t1, t2, t3, t4, t5) = t1− a1t1− a2t2− a3t3− a4t4− a5t5, where ai ≥ 0,
i = 1,2,3,4, also 0 < a1 + a2 + a3 + 2sa4 < 1 and 0 < a1 + a4 < 1.
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Gautam and Verma [21] proved the following theorem satisfying implicit
mappings.

Theorem 2.2. [21] Let (X, qpb) be a complete quasi-partial b-metric space
and T : X → X is continuous self map for all u ∈ X. Suppose that

F
[
qpb(Tu, Tv), qpb(x, y), qpb(u, Tv), qpb(v, Tv),

[qpb(u, Tv) + qpb(v, Tu)]
]
≤ 0.(3)

For some F ∈ FQ and if F satisfies F (q, 0, r, r, 2sq) ≤ 0 for all q, r ≥ 0, there
exists β ∈ [0, 1s ] such that q < βr, then z is a unique fixed point of T . i.e,
Tz = z with qpb(z, z) = 0.

We introduce a definition of a common fixed point via implicit mappings in
quasi-partial Sb-metric space.

Motivated by the concept given by Gautam and Verma [21] above. We
introduce the following definition.

Definition 2.3. Consider s ≥ 1. Let FQ be the set of all functions
FS(t1, t2, t3, t4, t5) : R5 → R such that

(FS1): FS is non-increasing in the t1 and t5 variable;
(FS2): for all q, r ≥ 0, there exist ϑ ∈ [0, 1s ], such that FS(q, r, q, r, s(2q +
r)) ≤ 0 implies q ≤ ϑr;

(FS3): FS(t, t, 0, 0, t) > 0 for all t > 0.

Example 2.4. The function of FS ∈ FQ satisfies the properties (FS1) -
(FS3).

(1): FS(t1, t2, t3, t4, t5) = t1 − t5, where γ ∈ [0, 1
2s );

(2): FS(t1, t2, t3, t4, t5) = t1 −max{t2, t3, t5}, where α, γ ∈ [0, 1
2s );

(3): FS(t1, t2, t3, t4, t5) = t1 −max{t2, t3, t4, t5}, where α, β, γ ∈ [0, 1s ).

Proof. (1), Let FS : R5 → R+. Define FS(t1, t2, t3, t4, t5) = t1 − t5, where
γ ∈ [0, 1s ). Then FS satisfies an implicit relation.

(FS1): FS is non-increasing in the t1 and t5 variable;
(FS2): for all q, r ≥ 0, we have

FS(q, r, r, , q, s(2q + r)) = t1 − γt5 ≤ 0,

q − γs(2q + r) ≤ 0,

(1− 2sγ)q ≤ sγr,

q ≤ sγr

(1− 2sγ)
.(4)

Thus q ≤ ϑr, with ϑ = sγ
(1−2sγ) < 1.



8 Lucas Wangwe and Santosh Kumar

(FS3): FS(t, t, 0, 0, t) > 0 for all t > 0.

FS(t, t, 0, 0, t) = t1 − t5 ≤ 0,

u− s(2u+ v) ≤ 0,

t− s(2t+ t)) ≤ 0,

(1− 3s)t ≤ 0,

t ≤ 0,

which is a contradiction. Hence FS ∈ FQ satisfies an implicit relation with
γ ∈ [0, 1s ).

The example (2, 3) can be proved similarly by following the above steps to
satisfy the implicit relation conditions imposed in Definition 2.3.

3. Main Results

We prove the following theorem, an extension of Theorem 2.2, from quasi-
partial b-metric Space to quasi-partial Sb-metric space setting. By using a pair
of self-mapping.

Theorem 3.1. Let (X,Sqpb
, s) be a complete quasi-partial Sb-metric space

with s ≥ 1, and let A,S : X → X be a pair of self-mappings. Assume that
there exists FS ∈ FQ, satisfies (FS1−FS4) such that the following conditions
hold:

(a): there exists AX ⊆ SX such that (X, qpb) is complete,
(b): there exists u0 ∈ X such that Sun = Aun−1 ,
(c): A and S have a coincidence point in X,
(d): (A,S) is non-decreasing and weakly compatible for some point u∗ in
X,

(e): there exists an implicit function FS ∈ FQ with

FS

 Sqpb
(Au,Au,Av), Sqpb

(Su,Su,Sv),
Sqpb

(Su,Su,Au), Sqpb
(Sv,Sv,Av),

[Sqpb
(Su,Su,Av) + Sqpb

(Sv,Sv,Au)]

 ≤ 0,(5)

∀u, v ∈ X. Then A and S have a unique common fixed point.

Proof. Assume that SX ⊆ AX and (X,Sqpb
) is a complete quasi-partial Sb-

metric space, for u0 with (Su0,Su0,Au0, ) ∈ X, we construct a S-A-sequence
{Aun} with initial point u0 satisfying

(Su0,Su0,Au0), (Su1,Su1,Au1), (Su2,Su2,Ax2), . . . , (Sun+1,Sun+1,Aun+1)

∀n ∈ NO = (N ∪ {0}), thus, {Aun}, {Sun} ∈ A(X).
From assumption (b), let u0 be an arbitrary element of X. If Su0 = Au0,

then u0 is a common fixed point of A and S and our proof completed. Oth-
erwise, if Su0 ̸= Au0, then SX ⊆ AX, now we choose u1 ∈ X such that
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Su1 = Au0. Again we can choose u2 ∈ X such that Su2 = Au1. Repeating
this process the same way, we construct a sequence {Sun} ⊂ X, such that

Sun+1 = Aun,∀n ∈ N0.

If Sun−1 = Sun = Aun−1, for all n ≥ 1, then un−1 is a coincidence point of A
and S inX. Suppose that Sun−1 ̸= Sun ∀n ≥ 1. Then Sqpb

(Sun+1,Sun+1,Sun) =
Sqpb

(Aun,Aun,Sun−1).

By taking u = un−1 and v = un in (5), we have

FS

Sqpb
(Aun−1,Aun−1,Aun), Sqpb

(Sun−1,Sun−1,Sun),
Sqpb

(Sun−1,Sun−1,Aun−1), Sqpb
(Sun,Sun,Aun),

[Sqpb
(Sun−1,Sun−1,Aun) + Sqpb

(Sun,Sun,Aun−1)]

 ≤ 0.

It follows that

FS

 Sqpb
(Sun,Sun,Sun+1), Sqpb

(Sun−1,Sun−1,Sun),
Sqpb

(Sun−1,Sun−1,Sun), Sqpb
(Sun,Sun,Sun+1),

[Sqpb
(Sun−1,Sun−1,Sun+1) + Sqpb

(Sun,Sun,Sun)]

 ≤ 0.(6)

By (QPSb4) we have

Sqpb
(Sun+1,Sun+1,Sun−1) ≤ s[2Sqpb

(Sun+1,Sun+1,Sun) +
Sqpb

(Sun,Sun,Sun−1)]

−Sqpb
(Sun,Sun,Sun).(7)

Using (7) in (5) we get

FS


Sqpb

(Sun,Sun,Sun+1), Sqpb
(Sun−1,Sun−1,Sun),

Sqpb
(Sun−1,Sun−1,Sun), Sqpb

(Sun,Sun,Sun+1),
[s[2Sqpb

(Sun+1,Sun+1,Sun) + Sqpb
(Sun,Sun,Sun−1)]

−Sqpb
(Sun,Sun,Sun) + Sqpb

(Sun,Sun,Sun)]

 ≤ 0.

Consequently,

FS

 Sqpb
(Sun,Sun,Sun+1), Sqpb

(Sun−1,Sun−1,Sun),
Sqpb

(Sun−1,Sun−1,Sun), Sqpb
(Sun,Sun,Sun+1),

s[2Sqpb
(Sun+1,Sun+1,Sun) + Sqpb

(Sun,Sun,Sun−1)]

 ≤ 0.

By denoting q = Sqpb
(Sun+1,Sun+1,Sun) and r = Sqpb

(Sun,Sun,Sun−1)
in (8) we get

FS

{
q, r, r, q, s(2q + r)

}
≤ 0.(8)

By (8), in view of condition (FS2) there exists ϑ ∈ [0, 1s ) and q is nonincreasing
in the first variable, such that uq ≤ ϑr, this implies that

Sqpb
(Sun+1,Sun+1,Sun) ≤ ϑSqpb

(Sun,Sun,Sun−1);(9)

∀n ∈ N.
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By induction in (9), we get

Sqpb
(Sun+1,Sun+1,Sun) ≤ ϑSqpb

(Sun,Sun,Sun−1),

≤ ϑ2Sqpb
(Sun−1,Sun−1,Sxn−2),

≤ . . .

≤ ϑnSqpb
(Su0,Su0,Su1).(10)

Therefore, limn→∞ Sqpb
(Sun+1,Sun+1,Sun) = 0.

Now, we prove that Sqpb
(Sun+1,Sun+1,Sun) is a Cauchy sequence. Let

n,m ∈ N, for any positive integers such that n > m, using (QPSb4) we have

Sqpb
(Sun,Sun,Sum) ≤ s[2Sqpb

(Sun,Sun,Sun−1) + Sqpb
(Sun−1,Sun−1,Sum)]

−Sqpb
(Sun−1,Sun−1,Sun−1),

= 2sSqpb
(Sun,Sun,Sun−1) + 2s2Sqpb

(Sun−1,Sun−1,Sun−2)

+s2Sqpb
(Sun−2,Sun−2,Sum) +

· · ·+ sm−n−1Sqpb
(Sum+1,Sum+1,Sum)

≤ 2[sϑn−1 + s2ϑn−2 + s3ϑn−3 +

· · ·+ sm−n+1ϑm]Sqpb
(Su0,Su0,Su1),

≤ 2sϑn−1[1 + sϑ+ s2ϑ2 +

· · ·+ sm−1ϑm−n+1]Sqpb
(Su0,Su0,Su1),

≤ 2sϑn−1

1− sϑ
Sqpb

(Su0,Su0,Su1).(11)

Since ϑ ∈ [0, 1s ), we conclude that 2sϑn−1

1−sϑ Sqpb
(Su0,Su0,Su1) → 0 as n → ∞.

Therefore, {Sun} is a Cauchy sequence in S(X). Thus Sqpb
(Sun,Sun,Sum) →

0 as n,m→ ∞.
Similarly, suppose that AX ⊆ SX. For every u0 ∈ X we consider the

sequence {Aun} ∈ X defined by

Sun = Aun−1,

Sun+1 = Aun.

If Sun+1 = Aun, then un is a fixed point of S and A and the proof completed.
On contrary, assume that Sun+1 ̸= Aun and un+1 ̸= un. Then, u = un and
v = un+1 in (5) we have

FS

 Sqpb
(Aun,Aun,Aun+1), Sqpb

(Sun,Sun,Sun+1),
Sqpb

(Sun,Sun,Aun), Sqpb
(Sun+1,Sun+1,Aun+1),

[Sqpb
(Sun,Sun,Aun+1) + Sqpb

(Sun+1,Sun+1,Aun)]

 ≤ 0.(12)

By substituting Sun = Aun−1 and Sun+1 = Aun in (12), we get

FS

 Sqpb
(Aun,Aun, ζxn+1), Sqpb

(Aun−1,Aun−1,Aun),
Sqpb

(Aun−1,Aun−1,Aun), Sqpb
(Aun,Aun,Aun+1),

[Sqpb
(Aun−1,Aun−1,Aun+1) + Sqpb

(Aun,Aun,Aun)]

 ≤ 0.(13)
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By (QPSb4), we have

Sqpb
(Aun−1,Aun−1,Aun+1) ≤ s[2Sqpb

(Aun−1,Aun−1,Aun) +
Sqpb

(Aun,Aun,Aun+1)]

−Sqpb
(Aun,Aun,Aun).(14)

Using (14) in (13), we get

FS


Sqpb

(Aun,Aun,Aun+1), Sqpb
(Aun−1,Aun−1,Aun),

Sqpb
(Aun−1,Aun−1,Aun), Sqpb

(Aun,Aun,Aun+1),
[s[2Sqpb

(Aun−1,Aun−1,Aun) + Sqpb
(Aun,Aun,Aun+1)]

−Sqpb
(Aun,Aun,Aun) + Sqpb

(Aun,Aun,Aun)]

 ≤ 0.(15)

Since quasi-partial Sb is not symmetrical, by (FS2), we reach similar results
from the right-hand side of Cauchy convergence.

Using (QPSb4) and (FS1), since is a non-decreasing in the fifth variable
and satisfy

q ≤ ϑr,

where ϑ ∈ [0, 1s ).

Which implies that

Sqpb
(Aun,Aun,Aun+1) ≤ ϑSqpb

(Aun−1,Aun−1,Aun),+
· · ·+

≤ ϑnSqpb
(Au0,Au0,Au1).(16)

For n→ ∞ in (16), leads to Sqpb
(Aun,Aun,Aun+1) → 0.

Using (QPSb4), for all n,m ∈ N0 with m > n, we obtain

Sqpb
(Aun,Aun,Aum) ≤ s[2Sqpb

(Sun,Aun,Aun+1) +

Sqpb
(Sun+1,Aun+1,Aum)]

−Sqpb
(Aun+1,Aun+1,Aun+1),

= 2sSqpb
(Aun,Aun,Aun+1) +

2s2Sqpb
(Aun+1,Aun+1,Aun+2)

+s2Sqpb
(Aun+2,Aun+2,Aum) +

· · ·+ sm−n−1Sqpb
(Aum−1,Aum−1,Aum)

≤ 2[sϑn + s2ϑn+1 + s2ϑn+2 + · · ·+
sm−n−1ϑm−1]Sqpb

(Au0,Au0,Au1),
= 2sϑn[1 + sϑ+ s2ϑ2 +

· · ·+ sm−n−2ϑm−n−1]Sqpb
(Au0,Au0,Au1),

≤ 2sϑn

1− sϑ
Sqpb

(Au0,Au0,Au1).(17)
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Since ϑ ∈ [0, 1s ), we conclude that 2sϑn

1−sϑSqpb
(Au0,Au0,Au1) → 0 as n → ∞.

Therefore, {Aun} is a Cauchy sequence inA(X). Thus Sqpb
(Aun,Aun,Aum) →

0 as n,m→ ∞.

Now we show that u∗ is a fixed point of Au such that u∗ = Au∗
and limn,m→∞ Sqpb

(un, un,Au∗) = Sqpb
(u∗, u∗,Au∗) = 0. Let u = un and

v = u∗, using (QPSb4) we obtain

Sqpb
(u∗, u∗,Au∗) ≤ s[Sqpb

(u∗, u∗, un+1) + Sqpb
(u∗, u∗, un+1) +

Sqpb
(Au∗,Au∗, un+1)]−

Sqpb
(un+1, un+1, un+1),

= s[2Sqpb
(u∗, u∗, un+1) + Sqpb

(Au∗,Au∗, un+1)]−
Sqpb

(un+1, un+1, un+1).(18)

Taking the limit n→ ∞ in (18), we get

Sqpb
(u∗, u∗,Au∗) ≤ s[2Sqpb

(u∗, u∗, u∗) + Sqpb
(Au∗,Au∗, u∗)]−

Sqpb
(u∗, u∗, u∗),

= s[0 + Sqpb
(Au∗,Au∗, u∗)]− 0,

≤ sSqpb
(Au∗,Au∗, u∗),

which is a contradiction. Hence, u∗ = Au∗. Thus u∗ is a fixed point of A.

From Definition 1.11, we show that u∗ is a coincidence point of A and S.
Since AX is complete there exists u∗, v∗ ∈ X such that u∗ = Sv∗. Which
implies that

lim
n→∞

Aun = lim
n→∞

Sun = Sv∗ = u∗.(19)

By taking u = un and v = v∗ in (5), we obtain

FS

 Sqpb
(Aun,Aun,Av∗), Sqpb

(Sun,Sun,Sv∗),
Sqpb

(Sun,Sun,Aun), Sqpb
(Sv∗,Sv∗,Av∗),

[Sqpb
(Sun,Sun,Av∗) + Sqpb

(Sv∗,Sv∗,Aun)]

 ≤ 0.(20)

Letting n→ ∞ in (20), we get

FS

 Sqpb
(Sv∗,Sv∗,Av∗), Sqpb

(Sv∗,Sv∗,Sv∗),
Sqpb

(Sv∗,Sv∗,Av∗), Sqpb
(Sv∗,Sv∗,Av∗),

[Sqpb
(Sv∗,Sv∗,Av∗) + Sqpb

(Sv∗,Sv∗,Av∗)]

 ≤ 0,(21)

by assumption (FS2) and continuity of FS , we obtain Sqpb
(Av∗,Av∗,Sv∗) ≤ 0.

Consequently,

Av∗ = Sv∗ = u∗.

Thus, u∗ is a coincidence point of S and A.
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Now, we assume that S and A are either S or A-weakly compatible. Let

lim
n→∞

un = u∗,

lim
n→∞

Sun = Su∗,

lim
n→∞

Aun = Au∗,

SSu∗ = SAu∗,
SAu∗ = ASu∗.

Suppose u = Su∗ and v = v∗, using (5) and definition 1.11, we get

FS

Sqpb
(ASu∗,ASu∗,Au∗), Sqpb

(SSu∗,SSu∗,Su∗),
Sqpb

(SSu∗,SSu∗,ASu∗), Sqpb
(Su∗,Su∗,Au∗),

[Sqpb
(SSu∗,SSu∗,Au∗) + Sqpb

(Su∗,Su∗,ASu∗)]

 ≤ 0,(22)

yields to,

FS

Sqpb
(ASu∗,ASu∗,Au∗), Sqpb

(SAu∗,SAu∗,Su∗),
Sqpb

(SAu∗,SAu∗,ASu∗), Sqpb
(Su∗,Su∗,Au∗),

[Sqpb
(SAu∗,SAu∗,Au∗) + Sqpb

(Su∗,Su∗,ASu∗)]

 ≤ 0.(23)

Which implies that
Sqpb

(Au∗,Au∗,SAu∗) ≤ 0.

We have Su∗ = SAu = ASu = Au∗. Thus, S and A are weakly compatible
self-maps of a set X. Therefore, S and A have a unique point of coincidence
u∗ = Su = Au, then u∗ is the unique common fixed point of S and A.

Pathaket al. [49], in their work, considered an example in which weakly com-
patible mapping is not compatible. In this work, we use one more example of
this type, which satisfies quasi partial Sb-metric Space and uses it to formulate
an implicit function that satisfies all conditions imposed in Definition 1.11 and
Theorem 3.1.

Example 3.2. Consider X = [0,∞] endowed with complete quasi-partial
Sb-metric space, defined by metric Sqpb

(u, u, v) = 2(u − v)2 on X. Define a
pair of mappings A,S : X → X by

Su =

{
cosu if u ̸= 1

0 if u = 1,

and

Au =

{
eu if u ̸= 1

0 if u = 1,

by Definition 1.11, it obvious that at u = 0, we have u∗ = Su = SSu =
ASu = Au, then u∗ = 0 is the unique common fixed point of S and A.
Therefore, the mappings S and A are weakly compatible. Define continuous
function F : R5

+ → R by

F (t1, t2, t3, t4, t5) = t1 − γt5.
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i.e.,

FS(u, v, v, u, s(2u+ v)) = t1 − γt5.

With a view to verify assumptions (a) and (d) of Theorem 3.1. Consider
Au,Su ∈ X so that

t1 ≤ γt5.

Sqpb
(Au,Au,Sv) ≤ γ[s[2Sqpb

(Au,Au,Sv) + Sqpb
(Av,Av,Su)]].(24)

Recall the quasi partial Sb-metric as,

Sqpb
(Au,Au,Sv) = 2(Au− Sv)2,

= 2(eu − cos v)2.(25)

Similarly,

Sqpb
(Av,Av,Su) = 2(Av − Su)2

= 2(ev − cosu)2.(26)

Using (25) and (26) in (24), we get

2(eu − cos v)2 ≤ γs[2(eu − cos v)2 + 2(ev − cosu)2],

2(eu − cos v)2(1− 2γs) ≤ γs[4(ev − cosu)2],

2(eu − cos v)2 ≤ γs

(1− 2γs)
[2(ev − cosu)2],(27)

which means

q ≤ ϑr.

Hence, FS satisfies FS1, FS2 and FS3 for ϑ ∈ [0, 1s ]. Also, all assumptions
of Theorem 3.1 and Definition 1.11 are satisfied. It is observed that the pair
(S,A) has a common fixed point. Thus, they admit a coincidence fixed point.

4. Some Applications

This section has two applications. The first application covers the existence
of the solution for two boundary value second-order differential equations. In
the second application, we prove the existence solution for Caputo-type non-
linear fractional differential equations. Finally, we use the two applications to
utilise the results obtained in Theorem 3.1 where a common solution is applied
in quasi partial Sb-metric space setting.
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4.1. Existence of the two boundary value second order differential
equation

In this subsection, we discuss the existence of a solution to the boundary
value problem by considering space to be quasi-partial Sb-metric space. We
now consider the second-order differential equation’s two-point boundary value
problem. The following example is motivated by [13, 18, 29, 47, 63]

(28)

 u
′′
(t) = f(t, u(t), u′(t)), 0 ≤ t ≤ T,

u(0) = α,
u(T ) = β,

where T > 0 and f : [0, T ]×X ×X −→ X is a continuous function.

This boundary value problem is equivalent to the integral equation

u(t) = α+
β − α

T
t+

∫ T

0

G(t, s)f(s, u(s), u′(s))ds,∀ t, s ∈ [0, T ].(29)

where the Green’s function associated with the above integral equation is given
by

G(t, s) =


s(T − t)

T
, 0 ≤ s ≤ t ≤ T,

t(T − s)

T
, 0 ≤ t ≤ s ≤ T,

and α, β > 0.

We prove our results by establishing a common fixed point for a pair of
weakly compatible self-mappings in quasi-partial Sb-metric space.

Theorem 4.1. Let A,S : C([0, T ]) −→ C([0, T ]) be self maps of a quasi-
partial Sb-metric space (X,Sqpb

) such that the following condition holds:

(i) there exists f : [0, T ] × R × R → R a continuous function and η-weakly
increasing in the first and fifth variables with γ ∈ [0, 1s ] such that

|f1(t, u(t), u′(t))| − |f2(t, v(t), V (t))| ≤ γ

√
ln[(u− v)2 + 1]

u− v
,

where |u(s) − v(s)| = γ
√

ln[(u−v)2+1]
u−v and for increasing of u and v, we

have u, v ∈ C1([0, T ], X),
(ii) the Green’s function is given by∫ T

0

G(t, s) ≤ 1

8
.

Then, the integral equation (29) has a common solution in C1([0, T ], X).



16 Lucas Wangwe and Santosh Kumar

Proof: Let C1([0, T ], X) = f : [0, T ] → R is a continuous function. Now,
we define the function Sqpb

: C[0, T ] × C[0, T ] × C[0, T ] → [0,∞) with the
quasi-partial Sb-metric

Sqpb
(u, u, v) = 2

(
sup

t∈[0,T ]

|u(t)− v(t)|

)2

+ 2

(
sup

t∈[0,T ]

|u′(t)− v′(t)|

)2

.

Then, (X,Sqpb
) is a complete quasi-partial Sb-metric space.

Let A,S : X −→ X be two S-weakly compatible operator defined by

Au(t) = α+
(β − α)t

T
+

∫ T

0

G(t, s)f1(t, s, u(s), u
′(s))ds,∀ t, s ∈ [0, T ].

and

Sv(t) = α+
(β − α)t

T
+

∫ T

0

G(t, s)f2(t, s, v(s), v
′(s))ds,∀ t, s ∈ [0, T ],

where f1, f2 and α, β are continuous functions.

Now, u∗ is a solution of (29) if and only if u∗ is a common fixed point of
A and S. Since A and S are increasing in the first and fifth variables, other
assertions of Theorem 4.1 are satisfied. We shows that A and S are contraction
in X.

For each t ∈ [0, 1], by (ii), we have∫ b

a

G(t, s)ds =
1

2
t(t− 1).

and sup-norm of t(1− t) = 1
4 , therefore

sup
t∈[a,b]

∫ b

a

G(t, s)ds =
1

8
.

By using condition (i) of Theorem 4.1, we discuss the following cases:

Case I.

|Au(t)− Sv(t)| =

∫ T

0

|f1(s, u(s), u′(s))− f2(s, v(s), v
′(s))|ds,

≤ 2

(∫ T

0

|G(t, s)|ds|u(s)− v(s)|

)2

,

≤ 2

(
γ

8

√
ln[(|u− v|)2 + 1]

|u− v|

)2

.(30)
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Case II.

|Au′(t)− Sv′(t)| =

∫ T

0

|f1(s, u(s), u′(s))− f2(s, v(s), v
′(s))|ds,

≤ 2

(∫ T

0

|G(t, s)|ds|u′(s)− v′(s)|

)2

,

≤ 2

(
γ′

8

√
ln[(|u′ − v′|)2 + 1]

|u′ − v′|

)2

.(31)

By combining (30) and (31) , we obtain

|Au(t)− Sv(t)|+ |Au′(t)− Sv′(t)| ≤ 2

(
γ

8

√
ln[(|u− v|)2 + 1]

|u− v|

)2

+

2

(
γ′

8

√
ln[(|u′ − v′|)2 + 1]

|u′ − v′|

)2

.

Sqpb
(Au,Au,Sv) ≤ ϑSqpb

(u, u, v).

Therefore u∗ ∈ X is a common fixed of A and S, also a solution to integral
equation (29). Hence the differential equation (28) has a solution.

4.2. Existence of a common solution of weakly compatible map-
pings for nonlinear fractional differential equation in quasi-
partial Sb-metric Space

This subsection aims to provide an application of Theorem 3.1 to get a
common solution of A,S-weakly compatible mappings for a nonlinear fractional
differential equation, where we can apply a generalised mapping in quasi partial
Sb-metric spaces.

We investigate the existence of a unique common fixed point for A,S-weakly
compatible mappings of the Caputo derivative with the fractional order of the
nonlinear fractional differential equation.

This form of fractional derivative for a continuous function f : [0,∞) → R
is given by Abdeljawad et al. [2] and Zahed et al. [64] as: Caputo fractional
derivative of f(t) order α > 0 is denoted by CDα

f (t) and defined as

CDαf(t) =
1

Γ (i− α)

∫ t

0

(t− τ)i−α−1ηi(τ)dτ,

with i = [α] + 1 ∈ N, where α ∈ [i− 1, i] and [α] denotes the greatest integers
of α (i.e., the greatest part of α) and α : [0,∞) → R is a continuous function.

We denote X = C([0, 1],R) the set of all continuous functions from [0, 1]
into R.

The Caputo fractional differential equation has several applications in math-
ematics, i.e., in image processing, Digital data processing, electrical signal,



18 Lucas Wangwe and Santosh Kumar

acoustics, physics, electrochemistry, radiotherapy and probability theory (one
can see in [65]). The following nonlinear fractional differential equation is in-
spired by Baleanu et al. [9], Budhia et al. [14], Jarad et al. [32], Karapinar et
al.[38] and Kanwal et al. [36].

Consider the following nonlinear fractional differential equation.

(32)


CDαu(t) = f(t, u(t)), t ∈ (0, 1), 1 < α ≤ 2,

u(0) = 0, u(1) =
∫ σ

0
u(τ)dτ (0 < σ < 1)

where CDα
τ denotes the Caputo fractional derivative of order α and f : [0, 1]×

X → X is a continuous function.

The nonlinear fractional differential Equation 32 can be written as

u(t) =
1

Γ (α)

∫ t

0

(t− τ)α−1f(τ, u(τ))dτ −

2t

(2− σ2)Γ (α)

∫ 1

0

(1− τ)α−1f(τ, u(τ))dτ +

2t

(2− σ2)Γ (α)

∫ σ

0

[∫ τ

0

(τ − z)α−1f(z, u(z))dz

]
dτ.(33)

A function x ∈ C(I,X) is a solution of the fractional differential integral equa-
tion (33) if and only if x is a solution of the nonlinear fractional differential
equation (32).

We define a quasi-partial Sb metric on X as

Sqpb
(u, u, v) =

(
sup

t∈[0,1]

|u(t)− v(t)|

)2

+

(
sup

t∈[0,1]

|u(t)− v(t)|

)2

.

Then, (X,Sqpb
) is a complete quasi-partial Sb metric space.

Now, we prove the following theorem.

Theorem 4.2. Suppose the following hypothesis hold:

(i): there exists f ∈ C(I×X,X) a continuous in the first and fifth variables;
(iii): there exists a continuous function f : [0, 1]× R → R+, such that

|f(t, u(τ)− f(t, v(τ)| ≤ 2ϑ|u(τ)− v(τ)|2,

for all t ∈ [0, 1] and for all u, v ∈ X and a constant ϑ ∈
[
0, 1s

)
such that

ϑ =

[
tα(2− σ2)(α+ 1) + 2t(α+ σ(α+1) + 1)

(2− σ2)Γ (α)(α(α+ 1))

]2
.

Then, the fractional differential Equation 32 has a common solution as
a fixed point u∗ ∈ C(I,X).
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Proof : Let us define A,S : C([0, 1]) → C([0, 1]), with ζ ∈ η by

Au(t) =
1

Γ (α)

∫ t

0

(t− τ)α−1f(τ, u(τ))dτ −

2t

(2− σ2)Γ (α)

∫ 1

0

(1− τ)α−1f(τ, u(τ))dτ +

2t

(2− σ2)Γ (α)

∫ σ

0

[∫ τ

0

(τ − z)α−1f(z, u(z))dz

]
dτ,(34)

for t ∈ [0, 1], then A is continuous at the first and fifth variables. Suppose that

Su(t) =
∫ τ

0

(τ − z)α−1f(z, u(z))dz,

this implies that S ∈ A and A posses a fixed point u∗ ∈ S. To prove the
existence of a fixed point of A, we prove that A is continuous in the first and
fifth variables of the implicit function FS and is a contraction. To show this,
let Au ̸= Sv, for all u, v ∈ [0, 1]. By the hypothesis of Theorem 4.2, we have

|Au−Av| = 2

∣∣∣∣∣ 1

Γ (α)

∫ t

0

(t− τ)α−1f(τ, u(τ))dτ −

2t

(2− ν2)Γ (α)

∫ 1

0

(1− τ)α−1f(τ, u(τ))dτ +

2t

(2− σ2)Γ (α)

∫ σ

0

[∫ τ

0

(τ − z)α−1f(z, u(z))dz

]
dτ

− 1

Γ (α)

∫ t

0

(t− τ)α−1f(τ, v(s))ds+

2t

(2− σ2)Γ (α)

∫ 1

0

(1− τ)α−1f(τ, v(τ))dτ −

2t

(2− σ2)Γ (α)

∫ σ

0

[∫ τ

0

(τ − z)α−1f(z, v(z))dz

]
dτ

∣∣∣∣∣
2

,
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≤ 2

(
1

Γ (α)

∫ t

0

(t− τ)α−1|f(τ, u(τ))− f(τ, v(τ))|dτ +

2t

(2− σ2)Γ (α)

∫ 1

0

(1− τ)α−1|f(τ, u(τ))− f(τ, v(τ))|dτ,+

2t

(2− σ2)Γ (α)

∫ σ

0

[∫ τ

0

(τ − z)α−1|f(z, u(z))− f(z, v(z))|dz

]
dτ

)2

,

≤ 2

(
1

Γ (α)

∫ t

0

(t− τ)α−1|u(τ)− v(τ)|dτ +

2t

(2− σ2)Γ (α)

∫ 1

0

(1− τ)α−1|u(τ)− v(τ)|dτ +

2t

(2− σ2)Γ (α)

∫ σ

0

[∫ τ

0

(τ − z)α−1|u(z)− v(z)|dz

]
dτ

)2

,

= 2

(
1

Γ (α)
∥u− v∥∞

∫ t

0

(t− τ)α−1dτ +

2t

(2− σ2)Γ (α)
∥u− v∥∞

∫ 1

0

(1− τ)α−1dτ +

2t

(2− σ2)Γ (α)
∥u− v∥∞

∫ σ

0

[∫ τ

0

(τ − z)α−1dz

]
dτ

)2

,

≤

[
tα

αΓ (α)
+

2t

(2− σ2)αΓ (α)
+

2tσα+1

(2− σ2)α(α+ 1)Γ (α)

]2
2∥u− v∥2∞,

≤ 2ϑ∥u− v∥2∞.(35)

This implies that

∥Au−Av∥∞ ≤ 2ϑ∥u− v∥2∞.
Thus for each u, v ∈ X, we have

Sqpb
(Au,Au,Av) ≤ ϑSqpb

(u, u, v).(36)

For ϑ ∈ [0, 1s ) and the condition ((FS1)− (FS2)) shows that A-S is a contrac-
tion mapping on X. Since all the hypotheses of Theorem (4.2) are satisfied.
Therefore, there exists u∗ ∈ C(I) a common fixed point of A and S, that is,
u∗ is a solution to fractional nonlinear differential equation (32).
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