Browse > Article
http://dx.doi.org/10.12989/cac.2019.23.3.171

Isogeometric analysis of gradient-enhanced damaged plasticity model for concrete  

Xu, Jun (Department of Bridge Engineering, Tongji University)
Yuan, Shuai (Department of Bridge Engineering, Tongji University)
Chen, Weizhen (Department of Bridge Engineering, Tongji University)
Publication Information
Computers and Concrete / v.23, no.3, 2019 , pp. 171-188 More about this Journal
Abstract
This study proposed a new and efficient 2D damage-plasticity model within the framework of Isogeometric analysis (IGA) for the geometrically nonlinear damage analysis of concrete. Since concrete exhibits complicated material properties, two internal variables are introduced to measure the hardening/softening behavior of concrete in tension and compression, and an implicit gradient-enhanced formulation is adopted to restore the well-posedness of the boundary value problem. The numerical results calculated by the model is compared with the experimental data of three benchmark problems of plain concrete (three-point and four-point bending single-notched beams and four-point bending double-notched beam) to illustrate the geometrical flexibility, accuracy, and robustness of the proposed approach. In addition, the influence of the characteristic length on the numerical results of each problem is investigated.
Keywords
damaged plasticity model; concrete; isogeometric analysis; implicit gradient-enhanced formulation; characteristic length;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Anitescu, C., Jia, Y., Zhang, Y.J. and Rabczuk, T. (2015), "An isogeometric collocation method using superconvergent points", Comput. Meth. Appl. Mech. Eng., 284, 1073-1097.   DOI
2 Areias, P., Msekh, M.A. and Rabczuk, T. (2016a), "Damage and fracture algorithm using the screened Poisson equation and local remeshing", Eng. Fract. Mech., 158, 116-143.   DOI
3 Areias, P., Rabczuk, T. and Camanho, P.P. (2013a), "Initially rigid cohesive laws and fracture based on edge rotations", Comput. Mech., 52(4), 931-947.   DOI
4 Areias, P., Rabczuk, T. and Camanho, P.P. (2014), "Finite strain fracture of 2D problems with injected anisotropic softening elements", Theor. Appl. Fract. Mech., 72, 50-63.   DOI
5 Areias, P., Rabczuk, T. and Dias-Da-Costa, D. (2013b), "Elementwise fracture algorithm based on rotation of edges", Eng. Fract. Mech., 110(3), 113-137.   DOI
6 Bazant, Z.P. (1991), "Why continuum damage is nonlocal: micromechanics arguments", J. Eng. Mech., 117(5), 1070-1087.   DOI
7 Areias, P., Rabczuk, T. and Sa, J.C.D. (2016b), "A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement", Comput. Mech., 1-16.
8 Areias, P., Reinoso, J., Camanho, P. and Rabczuk, T. (2015), "A constitutive-based element-by-element crack propagation algorithm with local mesh refinement", Comput. Mech., 56(2), 1-25.   DOI
9 Arrea, M. and Ingraffea, A.R. (1982), "Mixed-mode crack propagation in mortar and concrete", Department of Structural Engineering, Cornell University, Ithaca, NY.
10 Bazant, Z.P. and Jirasek, M. (2002), "Nonlocal integral formulations of plasticity and damage: survey of progress", J. Eng. Mech., 128(11), 1119-1149.   DOI
11 Bazant, Z.P. and Pijaudier-Cabot, G. (1988), "Nonlocal continuum damage, localization instability and convergence", J. Appl. Mech., 55(2), 287-293.   DOI
12 Bazant, Z.P. and Pijaudier-Cabot, G. (1989), "Measurement of characteristic length of nonlocal continuum", J. Eng. Mech., 115(4), 755-767.   DOI
13 Bazant, Z.P., Belytschko, T.B. and Chang, T.P. (1984), "Continuum theory for strain-softening", J. Eng. Mech., 110(12), 1666-1692.   DOI
14 Bui, T.Q., Hirose, S., Zhang, C., Rabczuk, T., Wu, C.T., Saitoh, T. and Lei, J. (2016), "Extended isogeometric analysis for dynamic fracture in multiphase piezoelectric/piezomagnetic composites", Mech. Mater., 97, 135-163.   DOI
15 Bazilevs, Y., Calo, V.M., Hughes, T.J.R. and Zhang, Y. (2008), "Isogeometric fluid-structure interaction: theory, algorithms, and computations", Comput. Mech., 43(1), 3-37.   DOI
16 Bocca, P., Carpinteri, A. and Valente, S. (1990), "Size effects in the mixed mode crack propagation: softening and snap-back analysis", Eng. Fract. Mech., 35(1-3), 159-170.   DOI
17 Borden, M.J., Hughes, T.J.R., Landis, C.M. and Verhoosel, C.V. (2014), "A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework", Comput. Meth. Appl. Mech. Eng., 273(5), 100-118.   DOI
18 Aifantis, E.C. (1984), "On the microstructural origin of certain inelastic models", J. Eng. Mater. Technol., 106(4), 326-330.   DOI
19 Al-Rub, R.K.A. and Voyiadjis, G.Z. (2009), "Gradient-enhanced coupled plasticity-anisotropic damage model for concrete fracture: computational aspects and applications", Int. J. Damage Mech., 18(2), 115-154.   DOI
20 Chen, A.C.T. and Chen, W.F. (1975), "Constitutive relations for concrete", J. Eng. Mech., 101, Proc. Paper 11529.
21 Cottrell, J.A., Reali, A., Bazilevs, Y. and Hughes, T.J.R. (2006), "Isogeometric analysis of structural vibrations", Comput. Meth. Appl. Mech. Eng., 195(41-43), 5257-5296.   DOI
22 Darwin, D. and Pecknold, D.A. (1977), "Nonlinear biaxial stressstrain law for concrete", J. Eng. Mech., 103(EM2), 12839.
23 Kroner, E. (1967), "Elasticity theory of materials with long range cohesive forces", Int. J. Solid. Struct., 3(5), 731-742.   DOI
24 Grassl, P. and Jirasek, M. (2006a), "Damage-plastic model for concrete failure", Int. J. Solid. Struct., 43(22), 7166-7196.   DOI
25 Grassl, P. and Jirasek, M. (2006b), "Plastic model with non-local damage applied to concrete", Int. J. Numer. Anal. Meth. Geomech., 30(1), 71-90.   DOI
26 Gutierrez, M.A. (2004), "Energy release control for numerical simulations of failure in quasi-brittle solids", Commun. Numer. Meth. Eng., 20(1), 19-29.   DOI
27 Ju, J.W. (1989), "On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects", Int. J. Solid. Struct., 25(7), 803-833.   DOI
28 Karsan, I.D. and Jirsa, J.O. (1969), "Behavior of concrete under compressive loadings", J. Struct. Div., 95(12), 2543-2563   DOI
29 Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of concrete under biaxial stresses", ACI J. Proc., 66(8), 656-666.
30 Lee, J. and Fenves, G. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900.   DOI
31 Engelen, R.A.B., Geers, M.G.D. and Baaijens, F.P.T. (2003), "Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour", Int. J. Plast., 19(4), 403-433.   DOI
32 de Borst, R. and Pamin, J. (1996), "Some novel developments in finite element procedures for gradient-dependent plasticity", Int. J. Numer. Meth. Eng., 39(14), 2477-2505.   DOI
33 de Borst, R., Benallal, A. and Heeres, O.M. (1996), "A gradientenhanced damage approach to fracture", Le Journal de Physique IV, 06(C6), 491-502.
34 de Borst, R., Hughes, T.J.R., Scott, M.A. and Verhoosel, C.V. (2011), "Isogeometric failure analysis", Multiscale and Multiphysics Processes in Geomechanics, Springer, 113-116.
35 Dorgan, R.J. and Voyiadjis, G.Z. (2006), "A mixed finite element implementation of a gradient-enhanced coupled damageplasticity model", Int. J. Damage Mech., 15(3), 201-235.   DOI
36 Elwi, A.A. and Murray, D.W. (1979), "A 3D hypoelastic concrete constitutive relationship", J. Eng. Mech. Div., 105(4), 623-641.   DOI
37 Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248.   DOI
38 Feist., C. and Hofstetter, G. (2007), "Validation of 3d crack propagation in plain concrete. Part I: Experimental investigation - the pct3d test", Comput. Concrete, 4(1), 49-66.   DOI
39 Gopalaratnam, V.S. and Shah, S.P. (1985), "Softening response of plain concrete in direct tension", ACI J. Proc., 82(3), 310-323.
40 Han, D.J. and Chen, W.F. (1985), "A nonuniform hardening plasticity model for concrete materials", Mech. Mater., 4(3), 283-302.   DOI
41 Hossain, K.M.A. and Olufemi, O.O. (2004), "Computational optimization of a concrete model to simulate membrane action in RC slabs", Comput. Concrete, 1(3), 325-354.   DOI
42 Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194(39-41), 4135-4195.   DOI
43 Jelic., I., Pavlovic, M.N. and Kotsovos, M.D. (2004). "Performance of structural-concrete members under sequential loading and exhibiting points of inflection", Comput. Concrete, 1(1), 99-113.   DOI
44 Jia, Y., Anitescu, C., Ghorashi, S.S. and Rabczuk, T. (2015), "Extended isogeometric analysis for material interface problems", IMA J. Appl. Math., 80(3), 608-633..   DOI
45 Jirasek, M. (1998), "Nonlocal models for damage and fracture: comparison of approaches", Int. J. Solid. Struct., 35(31), 4133-4145.   DOI
46 Mazars, J. and Pijaudier-Cabot, G. (1989), "Continuum damage theory-application to concrete", J. Eng. Mech., 115(2), 345-365.   DOI
47 Loland, K.E. (1980), "Continuous damage model for loadresponse estimation of concrete", Cement Concrete Res., 10(3), 395-402.   DOI
48 Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plasticdamage model for concrete", Int. J. Solid. Struct., 25(3), 299-326.   DOI
49 Malvar, L.J. and Warren, G.E. (1988), "Fracture energy for threepoint-bend tests on single-edge-notched beams", Exp. Mech., 28(3), 266-272.   DOI
50 Peerlings, R.H.J., De Borst, R., Brekelmans, W.A.M., De Vree, J.H.P. and Spee, I. (1996b), "Some observations on localisation in non-local and gradient damage models", Eur. J. Mech. A: Solid., 15(6), 937-953.
51 Verhoosel, C.V., Remmers, J.J.C. and Gutierrez, M.A. (2009), "A dissipation-based arc-length method for robust simulation of brittle and ductile failure", Int. J. Numer. Meth. Eng., 77(9), 1290-1321.   DOI
52 Simo, J.C. and Ju, J.W. (1987b), "Strain- and stress-based continuum damage models - II. Computational aspects", Int. J. Solid. Struct., 23(7), 841-869.   DOI
53 Stroeven., P., Hu., J. and Stroeven, M. (2009), "On the usefulness of discrete element computer modeling of particle packing for material characterization in concrete technology", Comput. Concrete, 6(2), 133-153.   DOI
54 Thai, T.Q., Rabczuk, T., Bazilevs, Y. and Meschke, G. (2016), "A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis", Comput. Meth. Appl. Mech. Eng., 304, 584-604.   DOI
55 Verhoosel, C.V., Scott, M.A., Hughes, T.J.R. and De Borst, R. (2011), "An isogeometric analysis approach to gradient damage models", Int. J. Numer. Meth. Eng., 86(1), 115-134.   DOI
56 Vermeer, P.A. and Brinkgreve, R.B.J. (1994), "A new effective non-local strain measure for softening plasticity", Localization and Bifurcation Theory for Soils and Rocks, 89-100.
57 Voyiadjis, G.Z., Taqieddin, Z.N. and Kattan, P.I. (2008), "Anisotropic damage-plasticity model for concrete", Int. J. Plast., 24(10), 1946-1965.   DOI
58 Yu, H.X. and Wu, J.H. (2009), "An elastoplastic damage constitutive model for concrete based on undamaged state", Eng. Mech., 26(10), 79-86. (in Chinese)
59 Zhu, H., Wang, Q. and Zhuang, X. (2016), "A nonlinear semiconcurrent multiscale method for fractures", Int. J. Impact Eng., 87, 65-82.   DOI
60 Zhuang, X., Cai, Y. and Augarde, C. (2014), "A meshless subregion radial point interpolation method for accurate calculation of crack tip fields", Theor. Appl. Fract. Mech., 69(2), 118-125.   DOI
61 Pamin, J.K. (1994), "Gradient-dependent plasticity in numerical simulation of localization phenomena", TU Delft, Delft University of Technology.
62 Miehe, C., Welschinger, F. and Hofacker, M. (2010), "Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations", Int. J. Numer. Meth. Eng., 83(10), 1273-1311.   DOI
63 Nguyen, V.P., Anitescu, C., Bordas, S.P.A. and Rabczuk, T. (2015), "Isogeometric analysis: An overview and computer implementation aspects", Math. Comput. Simul., 117, 89-116.   DOI
64 Ozbolt, J., Kozar, I. and Periskic, G. (2007), "Three-dimensional FE analysis of headed stud anchors exposed to fire", Comput. Concrete, 2(4), 249-266.   DOI
65 Papadakis., V.G., Efstathiou., M.P. and Apostolopoulos., C.A. (2007), "I Computer-aided approach of parameters influencing concrete service life and field validation", Comput. Concrete, 4(1), 1-18.   DOI
66 Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M. and de Vree, J.H.P. (1996a), "Gradient enhanced damage for quasi-brittle materials", Int. J. Numer. Meth. Eng., 39(19), 3391-3403.   DOI
67 Rabczuk, T. and Eibl, J. (2003), "Simulation of high velocity concrete fragmentation using SPH/MLSPH", Int. J. Numer. Meth. Eng., 56(10), 1421-1444.   DOI
68 Pijaudier-Cabot, G. and Bazant, Z.P. (1987), "Nonlocal damage theory", J. Eng. Mech., 113(10), 1512-1533.   DOI
69 Poh, L.H. and Swaddiwudhipong, S. (2009), "Over-nonlocal gradient enhanced plastic-damage model for concrete", Int. J. Solid. Struct., 46(25), 4369-4378.   DOI
70 Rabczuk, T. and Belytschko, T. (2007), "A three-dimensional large deformation meshfree method for arbitrary evolving cracks", Comput. Meth. Appl. Mech. Eng., 196(29-30), 2777-2799.   DOI
71 Rabczuk, T. and Eibl, J. (2006), "Modelling dynamic failure of concrete with meshfree methods", Int. J. Impact Eng., 32(11), 1878-1897.   DOI
72 Rabczuk, T., Akkermann, J. and Eibl, J. (2005), "A numerical model for reinforced concrete structures", Int. J. Solid. Struct., 42(5), 1327-1354.   DOI
73 Rots, J.G., Nauta, P.G., Kuster, G.M.A. and Blaauwendraad, J. (1985), "Smeared crack approach and fracture localization in concrete", Heron, 30(1), 1985.
74 Saritas, A. and Filippou, F.C. (2009), "Numerical integration of a class of 3d plastic-damage concrete models and condensation of 3d stress-strain relations for use in beam finite elements", Eng. Struct., 31(10), 2327-2336.   DOI
75 Simo, J.C. and Ju, J.W. (1987a), "Strain- and stress-based continuum damage models - I. Formulation", Int. J. Solid. Struct., 23(7), 821-840.   DOI
76 Zhuang, X., Augarde, C.E. and Mathisen, K.M. (2012), "Fracture modeling using meshless methods and level sets in 3D: Framework and modeling", Int. J. Numer. Meth. Eng., 92(11), 969-998.   DOI