• Title/Summary/Keyword: non-Lie group

Search Result 28, Processing Time 0.019 seconds

LEFT INVARIANT LORENTZIAN METRICS AND CURVATURES ON NON-UNIMODULAR LIE GROUPS OF DIMENSION THREE

  • Ku Yong Ha;Jong Bum Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.143-165
    • /
    • 2023
  • For each connected and simply connected three-dimensional non-unimodular Lie group, we classify the left invariant Lorentzian metrics up to automorphism, and study the extent to which curvature can be altered by a change of metric. Thereby we obtain the Ricci operator, the scalar curvature, and the sectional curvatures as functions of left invariant Lorentzian metrics on each of these groups. Our study is a continuation and extension of the previous studies done in [3] for Riemannian metrics and in [1] for Lorentzian metrics on unimodular Lie groups.

TOTALLY DISCONNECTED GROUPS, P-ADIC GROUPS AND THE HILBERT-SMITH CONJECTURE

  • Lee, Joo-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.691-699
    • /
    • 1997
  • The following statement is known as the generalized Hilbert-Smith conjecture : If G is a compact group and acts effectively on a manifold, then G is a Lie group. In this paper we prove that the generalized Hilbert-Smith conjecture is equivalent to the following : A known, but has never been published before.

  • PDF

CLASSIFICATION OF SOLVABLE LIE GROUPS WHOSE NON-TRIVIAL COADJOINT ORBITS ARE OF CODIMENSION 1

  • Ha, Hieu Van;Hoa, Duong Quang;Le, Vu Anh
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.1181-1197
    • /
    • 2022
  • We give a complete classification of simply connected and solvable real Lie groups whose nontrivial coadjoint orbits are of codimension 1. This classification of the Lie groups is one to one corresponding to the classification of their Lie algebras. Such a Lie group belongs to a class, called the class of MD-groups. The Lie algebra of an MD-group is called an MD-algebra. Some interest properties of MD-algebras will be investigated as well.

The Real Rank of CCR C*-Algebra

  • Sudo, Takahiro
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.223-232
    • /
    • 2008
  • We estimate the real rank of CCR C*-algebras under some assumptions. A applications we determine the real rank of the reduced group C*-algebras of non-compac connected, semi-simple and reductive Lie groups and that of the group C*-algebras of connected nilpotent Lie groups.

THREE-DIMENSIONAL ALMOST KENMOTSU MANIFOLDS WITH η-PARALLEL RICCI TENSOR

  • Wang, Yaning
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.793-805
    • /
    • 2017
  • In this paper, we prove that the Ricci tensor of a three-dimensional almost Kenmotsu manifold satisfying ${\nabla}_{\xi}h=0$, $h{\neq}0$, is ${\eta}$-parallel if and only if the manifold is locally isometric to either the Riemannian product $\mathbb{H}^2(-4){\times}\mathbb{R}$ or a non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure.

NOTES ON ${\overline{WN_{n,0,0_{[2]}}}$ I

  • CHOI, SEUL HEE
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.571-581
    • /
    • 2005
  • The Weyl-type non-associative algebra ${\overline{WN_{g_n,m,s_r}}$ and its subalgebra ${\overline{WN_{n,m,s_r}}$ are defined and studied in the papers [8], [9], [10], [12]. We will prove that the Weyl-type non-associative algebra ${\overline{WN_{n,0,0_{[2]}}}$ and its corresponding semi-Lie algebra are simple. We find the non-associative algebra automorphism group $Aut_{non}({\overline{WN_{1,0,0_{[2]}}})$.

  • PDF

INVARIANT RINGS AND REPRESENTATIONS OF SYMMETRIC GROUPS

  • Kudo, Shotaro
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1193-1200
    • /
    • 2013
  • The center of the Lie group $SU(n)$ is isomorphic to $\mathbb{Z}_n$. If $d$ divides $n$, the quotient $SU(n)/\mathbb{Z}_d$ is also a Lie group. Such groups are locally isomorphic, and their Weyl groups $W(SU(n)/\mathbb{Z}_d)$ are the symmetric group ${\sum}_n$. However, the integral representations of the Weyl groups are not equivalent. Under the mod $p$ reductions, we consider the structure of invariant rings $H^*(BT^{n-1};\mathbb{F}_p)^W$ for $W=W(SU(n)/\mathbb{Z}_d)$. Particularly, we ask if each of them is a polynomial ring. Our results show some polynomial and non-polynomial cases.

NON-OVERLAPPING CONTROL SYSTEMS ON AFF(R)

  • Chae, Younki;Lim, Yongdo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.163-170
    • /
    • 1995
  • Let G be a Lie group with Lie algebra L(G) and let $\Omega$ be a nonempty subset of L(G). If $\Omega$ is interpreted as the set of controls, then the set of elements attainable from the identity for the system $\Omega$ is a subsemigroup of G. A system $\Omega$ is called a non-overlapping control system if any element attainable for $\Omega$ is only attainable at one time.

  • PDF

CURVATURE HOMOGENEITY AND BALL-HOMOGENEITY ON ALMOST COKӒHLER 3-MANIFOLDS

  • Wang, Yaning
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.253-263
    • /
    • 2019
  • Let M be a curvature homogeneous or ball-homogeneous non-$coK{\ddot{a}}hler$ almost $coK{\ddot{a}}hler$ 3-manifold. In this paper, we prove that M is locally isometric to a unimodular Lie group if and only if the Reeb vector field ${\xi}$ is an eigenvector field of the Ricci operator. To extend this result, we prove that M is homogeneous if and only if it satisfies ${\nabla}_{\xi}h=2f{\phi}h$, $f{\in}{\mathbb{R}}$.