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CLASSIFICATION OF SOLVABLE LIE GROUPS WHOSE

NON-TRIVIAL COADJOINT ORBITS ARE OF

CODIMENSION 1

Hieu Van Ha, Duong Quang Hoa, and Vu Anh Le

Abstract. We give a complete classification of simply connected and
solvable real Lie groups whose nontrivial coadjoint orbits are of codimen-

sion 1. This classification of the Lie groups is one to one corresponding

to the classification of their Lie algebras. Such a Lie group belongs to a
class, called the class of MD-groups. The Lie algebra of an MD-group is

called an MD-algebra. Some interest properties of MD-algebras will be
investigated as well.

1. Introduction

Throughout this paper, unless otherwise specified, the underlying field is
always the field R of real numbers. As we know, an n-dimensional Lie algebra
can be defined via the commutators of its basis vectors. More precisely, in
order to define an n-dimensional Lie structure P on an n-dimensional vector
space G spanned by {x1, x2, . . . , xn}, we need to define the Lie brackets

[xi, xj ] =

n∑
k=1

akijxk (1 ≤ i, j ≤ n)

which satisfy two properties:

[xi, xj ] = −[xj , xi] ∀i, j,(skew-symmetrix)

[xi, [xj , xk]] + [xj , [xk, xi]] + [xk, [xi, xj ]] = 0 ∀i, j, k.(Jacobi identity)

In other words, we need to consider the family {adxi : i = 1, 2, . . . , n} of n
adjoint operators on G which satisfies the following requirements:

adxi
(xj) = −adxj

(xi) ∀i, j,(skew-symmetrix)

adxi
◦ adxj

− adxj
◦ adxi

= ad[xi,xj ] ∀i, j.(Jacobi identity)
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Let’s denote by Ai the n× n matrix of the adjoint operator adxi
with respect

to the basis {x1, . . . , xn}, i = 1, . . . , n. Note that the family of matrices A :=
(A1, . . . , An) is determined by the n-dimensional Lie structure P .

According to Kirillov et al. [14], the set P of all n-dimensional Lie structures
P on G determines the set An := {A : P ∈ P} ⊂ G ⊗ G∗ ⊗ G∗. Due to the
skew-symmetry and Jacobi identity, the set An forms an algebraic variety in
n3-dimensional space G ⊗ G∗ ⊗ G∗ and it is called the variety of n-dimensional
Lie algebra structures in term of A. A. Kirillov et al. [14].

Note that, by Kirillov et al. [14], the natural action of the general linear
group GL(G) ≡ GL(n,R) on G⊗G∗⊗G∗ takes the variety An into itself and the
orbits of GL(n,R) in An correspond to the isomorphic classes of n-dimensional
Lie algebras. In other words, the orbit space An/GL(n,R) coincides with the
set of isomorphic classes of n-dimensional real Lie algebra. Hence, the number
of parameters increases drastically and the volume of calculations, therefore,
will become enormous when n not small [4]. In particular, while using the
techniques of Gröbner bases and the computer algebra system Magma to solve
the problem of classification of small-dimensional solvable Lie algebras, W. A.
de Graaf [12] noted in 2005 that “the Gröbner basis computations (to classify
solvable Lie algebras of dimension 5) can be rather time consuming, and there
are even instances where it did not terminate in reasonable time”. Recently,
while trying to give an algorithm to test the isomorphism of two given Lie
algebras (over real and complex fields) by using the triangular decomposition,
L. A. Vu (the second author of this article) et al. found out the difficulty of using
computer-based approach for the problem of classification of Lie algebras of
dimension greater than 6 [19]. That explains why the problem of classification
of general Lie algebras (as well as Lie groups) of dimension n strictly greater
than 6 is still open until now (a complete classification of solvable Lie algebras
of dimension 6 is given in [25], and of nilpotent Lie algebras of dimension 7 in
[10]). In some certain cases, the problem of the classification is proven to be
“wild” and “hopeless” [2, 3, 5, 9].

However, it is still possible to classify some interest subclass of solvable Lie
algebras (of general finite dimensions) added one or some special properties
in which we can use techniques in matrix theory to make the matrices in the
family A = (A1, . . . , An) to be as simple as possible. An illustration for this
idea is the existence of the Vergne bases of filiform Lie algebras [21]. In this
paper, we will use geometric properties of coadjoint orbits (as known as K-
orbits) to investigate Lie groups (as well as Lie algebras) whose non-trivial
coadjoint orbits are all of the same dimension. This idea comes from the
Kirillov’s method [13] and proposed by D. N. Diep while searching for the
class of Lie groups whose C∗-algebra can be characterized by BDF K-functions
in 1980 [7]. More precisely, Diep recommended to consider finite-dimensional
solvable and simply connected Lie groups whose coadjoint orbits are either of
dimension 0 or of a constant positive dimension (which is called the maximal
dimension). This Lie group is said to have the property MD and is called an
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MD-group. The Lie algebra of an MD-group is called a Lie algebra having the
property MD or an MD-algebra for brevity. It is worth pointing out that the
family of K-orbits of the maximal dimension of an MD-group forms a measured
foliation in terms of A. Connes [6, 26].

The problem of classifying MD-algebras has received much attention in re-
cent decades, but the results are not much.

• In 1984, V. M. Son and H. H. Viet gave a complete classification of MD-
groups whose maximal dimension of K-orbits is equal to the dimension
of the group [24].

• In 1990, L. A. Vu (the second author of this paper) gave the classifica-
tion (up to isomorphism) of all MD-algebras of dimension 4 [26,27].

• In 1995, D. Arnal et al. gave a list of all MD-algebras in which the
maximal dimension of K-orbits of corresponding MD-groups is 2 [1].

• In 2012, L. A. Vu and H. V. Hieu (the first author of this paper)
et al. gave the classification (up to isomorphism) of MD-algebras of
dimension 5 [28,30].

• In 2016, L. A. Vu, H. V. Hieu et al. classified (up to isomorphism) all
of MD-algebras which have the first derived ideal of codimension 1 or
2 [29].

• In 2019, M. Goze and E. Remm used Cartan class to give the clas-
sification (up to isomorphism) of all of MD-algebras such that their
nontrivial coadjoint orbits are of dimension 4 [11].

Basically, the approaches of the classifying MD-algebras obtained in the
above papers can be divided into the following directions: (1) fixing the di-
mensions of Lie algebras and (or) the dimensions of the derived series [26–30],
(2) fixing the maximal dimension of coadjoint orbits [1, 11], and (3) fixing the
codimension of coadjoint orbits [24]. Our paper follows the third direction.
Specifically, we will classify all MD-algebras whose nontrivial K-orbits are of
codimension 1 (i.e., the maximal dimension of K-orbits is 1 less than the di-
mension of such a Lie algebra).

The paper is organized into three sections, including this introduction. In
Section 2 we recall some basic preliminary concepts, notations and properties
which will be used throughout the paper. The last section will be devoted to
setting and proving the main results of the paper.

2. Preliminaries

Throughout this paper, the following notations will be used.

• An n × n matrix whose (i, j)-entry is aij will be written as (aij)n×n.
While the (i, j)-entry of a matrix A will be denoted by (A)ij . To
simplify notation we use the same letter A for the endomorphism of Fn
which is defined by assigning a column vector v ∈ Fn to Av, assumed
that the entries of A take values in F. Note that ImA is equal to the
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F-vector space spanned by the columns of A. We shall denote by 0 the
zero matrix of suitable size.

• With the notation V = 〈v1, v2, . . . , vn〉, we mean v1, v2, . . . , vn is a basis
of the vector space V . The dual space of V will be denoted by V ∗. It
is well-know that if V = 〈v1, . . . , vn〉, then V ∗ = 〈v∗1 , . . . , v∗n〉, where
each v∗i is defined by v∗i (vj) = δij (the Kronecker delta symbol) for
1 ≤ i, j ≤ n.

• By G we always mean a solvable Lie algebra of finite dimension over
the real field with Lie bracket [·, ·]. For any x ∈ G, we will denote by
adx the adjoint action of x on G, i.e., adx is the endomorphism of G
defined by adx(y) = [x, y] for every y ∈ G. By ad1

x, ad2
x we mean the

restricted maps of adx on the first derived ideal G1 := [G,G] and the
second derived ideal G2 := [G1,G1], respectively. Since both G1 and G2
are ideals of G, we shall consider ad1

x and ad2
x as endomorphisms of G1

and G2, respectively. Similarly, we will denote by F 1 the restriction
F |G1 of any form F ∈ G∗ on G1.

Next, we will recall some definitions, elementary results about coadjoint repre-
sentation of solvable Lie groups. For more details, we refer reader to [13].

Definition. Let G be a Lie group and let G be its Lie algebra. If Ad : G →
Aut(G) denotes the adjoint representation of G, then the action

K : G → Aut(G∗)
g 7→ Kg

defined by

Kg(F )(x) = F
(
Ad(g−1)(x)

)
for F ∈ G∗, x ∈ G

is called the coadjoint representation of G in G∗. Each orbit in the coadjoint
representation of G is called a coadjoint orbit (or a K-orbit for short) of G as
well as of G.

For each F ∈ G∗, the K-orbit that passes through the point F is denoted by
ΩF , i.e.,

ΩF = {Kg(F ) : g ∈ G}.

Definition ([13, Section 15.1]). Let F be any element in G∗. The Kirillov’s
bilinear form with respect to F is defined by

BF (x, y) := F ([x, y]) for x, y ∈ G.

It is a bilinear skew symmetric form on G.

The matrix of BF with respect to a basis {x1, x2, . . . , xn} of G, which is
equal to

(
F ([xi, xj ])

)
n×n, is called the Kirillov’s matrix of F with respect to

that basis. From now on, when a basis of G is fixed, we will always treat
BF as the Kirillov’s matrix of F with respect to the fixed matrix. The set
of matrices {BF : F ∈ G∗} will be called the Kirillov’s matrices of G. The
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following proposition gives us a connection between dimension of ΩF and the
rank of BF .

Proposition 2.1 ([13, Section 15.3]). Let F be any element in G∗. Then

dim ΩF = rankBF .

As a consequence, dim ΩF is always even for every F in G∗ and dim ΩF > 0
if and only if F 1 is not equal to zero, i.e., F |G1 6= 0. It is trivial to see that if
dim ΩF = 0 for every F ∈ G∗, then G is commutative. Our concern will be Lie
algebras in which the dimensions of non-trivial K-orbits are equal.

Definition ([24, Introduction]). A finite dimensional solvable and simply con-
nected Lie group is called an MD-group (in terms of Do Ngoc Diep) if its
K-orbits are either of dimension zero (trivial ones) or of the same positive
constant dimension. The Lie algebra of an MD-group is called an MD-algebra.

Let G be an MD-group. Then the positive constant dimension of K-orbits
is also called the maximal dimension of K-orbits of G (as well as of the corre-
sponding Lie algebra G). If this maximal dimension is given by k (k > 0), we
also say that G is an MDk-algebra. Furthermore, if dimG = n, then G is also
called an MDk(n)-algebra. In particular, if an MD-group G satisfies one of the
following properties: either all K-orbits are trivial or the maximal dimension
of K-orbits is equal to the dimension of G, then G is said to be an SMD-group.
The Lie algebra of an SMD-group is called an SMD-algebra. It is clear that any
commutative Lie algebra is an SMD-algebra and it has no maximal dimension
of K-orbits because its K-orbits are all trivial.

In order to classify MDn−1(n)-algebras, we firstly note that all solvable Lie
algebras of dimension n < 4 are obviously MD-algebras and can be classified
easily. Therefore we only take interest in MD-algebras of dimension n ≥ 4. On
the other hand, in 1984 V. M. Son and H. H. Viet gave a bound for the solvable
index of MD-algebras which is presented in the following proposition.

Proposition 2.2 ([24, Theorem 4]). If G is an MD-algebra, then its second
derived ideal G2 is commutative.

Therefore, if G is an MD-algebra, then the third derived ideal G3 := [G2,G2]
is the trivial vector space. In this paper, a solvable Lie algebra is said to be i-
step solvable if Gi is non trivial (i.e., Gi 6= {0}) and commutative. By using this
term, Proposition 2.2 means that any non-commutative MD-algebra is either
1-step or 2-step solvable. The basis idea of the classification we use in this
paper is to classify 1-step solvable MDn−1(n)-algebras firstly and to connect 2-
step solvable MDn−1(n)-algebras with 1-step solvable MDn−1(n − 1)-algebras
afterwards. To deal with 1-step solvable ones, it is necessary to recall the
following classical result.

Proposition 2.3 ([30, Lemma 3.1]). If G is 1-step solvable, then

ad1
x ◦ ad1

y = ad1
y ◦ ad1

x ∀x, y ∈ G.
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In other words, {ad1
x : x ∈ G} is a commuting family of linear endomorphisms

of G1.

Hence, it is reasonable to consider the set of commuting matrices over the
real field. It is well-known that an arbitrary set of commuting matrices over the
complex field C has an invariant subspace of dimension 1. Therefore, it may
be simultaneously brought to triangular form by a unitary similarity [18, 20].
Similarly for the triangular form of an arbitrary set of commuting real matrices.
We state these classical results in the following proposition.

Proposition 2.4. Let S ⊆ Mn×n(F) be a set of commuting n × n matrices
over a field F, i.e., AB = BA for every A,B ∈ S.

(i) If F = C, then S is simultaneously triangularizable by a unitary matrix,
i.e., there exists a complex unitary matrix T so that T−1AT is a upper
triangular matrix for all A ∈ S.

(ii) If F = R, then S is block simultaneously triangularizable by a orthogonal
matrix, i.e., there is a real orthogonal matrix T so that T−1AT is
a block upper triangular matrix, where each diagonal block is of size
either 1 or 2, for all A ∈ S.

To close this section, we recall here the classification of real solvable Lie
algebras whose non-trivial coadjoint orbits are all of the same dimension as
the algebras, or the classification of real MDn(n)-algebras (as known as SMD-
algebras).

Proposition 2.5 ([24]). Let G be a real MDn(n)-algebra. If G is non-commuta-
tive, then G is isomorphic to one of the following forms:

(i) the real affine algebra aff(R) = 〈x, y〉 with

[x, y] = y,

(ii) the complex affine algebra aff(C) = 〈x1, x2, y1, y2〉 with

[x1, y1] = y1, [x1, y2] = y2, [x2, y1] = −y2, [x2, y2] = y1.

3. Main results

In this section, we firstly give some new interest properties of MDk(n)-
algebras, especially 1-step solvable MD-algebras (Theorems 3.1, 3.2 & 3.4).
Secondly, we give a connection between 1-step solvable MD-algebras and 2-
step solvable MD-algebras (Theorem 3.5). Finally, we will present the complete
classification of MDn−1(n)-algebras in the last theorem. It is possible that we
can apply Theorem 3.2 and Theorem 3.5 to obtain the classification of MDk(n)-
algebras with n− k small (not necessary to be 1) but we will not develop this
point here.
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3.1. Some new characteristics of MD-algebras

Theorem 3.1. Let G be a non-commutative Lie algebra. Then G is a decom-
posable MDk-algebra if and only if it is a trivial extension of an indecomposable
MDk-algebra by a finite-dimensional commutative Lie algebra.

Proof. Let’s first prove the “if” part. Assume that G is a direct sum of an MDk-
algebra with a finite-dimensional commutative algebra Rr, i.e., G = K ⊕ Rr,
where K is an MDk-algebra. If so, we have

(1) G1 = K1.

Denote by n the dimension of G. Let’s fix a basis {x1, x2, . . . , xn} of G so that
K = 〈x1, . . . , xn−r〉. For any F = FK + Fr ∈ G∗ with FK ∈ K∗ ⊆ G∗ and
Fr ∈ (Rr)∗ ⊆ G∗, we denote by Ω̄FK the K-orbit of FK in K∗ ⊂ G∗. It is
elementary to see that

(2) BF =

[
B̄FK 0

0 0

]
,

where B̄FK is the Kirillov’s matrix of FK in K with respect to the basis
{x1, . . . , xn−r}. Therefore, we get rankBF = rank B̄FK . Since K is an MDk-
algebra, we have

(3) dim ΩF = dim Ω̄FK =

{
0 if F |K1 = 0,
k elsewhere.

This proves G is an MDk-algebra, as required.
It remains to prove the “only if” part. By contradiction, assume that G =

K ⊕ L in which both K and L are non-commutative sub-algebras of G. Let’s
denote by n and m the dimensions of G and K, respectively. Since G = K⊕L,
there is a basis {x1, x2, . . . , xn} of G so that

(4)

{
K = 〈x1, x2, . . . , xm〉,
L = 〈xm+1, . . . , xn〉.

Because both K and L are non-commutative, there exist two non-zero elements
F1, F2 ∈ (G)∗ so that

(5)

{
F1|K1 6= 0, F1|L1 = 0,
F2|K1 = 0, F2|L1 6= 0.

If so, it is elementary to see that

(6) BF1
=

[
M 0
0 0

]
, and BF2

=

[
0 0
0 N

]
,

where M and N are two non-zero matrices of dimension m×m and (n−m)×
(n−m), respectively. We thus get

0 < rankBF1 < rankBF1 + rankBF2 = rankBF1+F2 .

In other words,
0 < dim ΩF1

< dim ΩF1+F2
,
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a contradiction to the fact that G is an MD-algebra. This completes the proof.
�

Theorem 3.2. Let G be a 1-step solvable MDk(n)-algebra so that dimG1 >
n− k. Then we have the following assertions.

(i)
∑
y∈G Im ad1

y = G1.
(ii) There is x in G so that ad1

x is an automorphism on the vector space
G1.

(iii) G can be expressed as the semidirect sum L ⊕ρ G1 of a commutative
subalgebra L of G with the first derived ideal G1 by the representation
ρ : L → Der(G1), which is defined by ρ(x) = ad1

x for every x ∈ L.

In order to prove this theorem, we will need the following lemma.

Lemma 3.3. Let S = {A1, A2, . . . , As} be a set of complex upper triangular
matrices of size m×m. If S is commutative (i.e., AB = BA for every A,B ∈ S)
and

(7)

s∑
i=1

ImAi = Cm,

then there is a linear combination of elements of S so that it is nonsingular.

Proof. The proof is by induction on m. It is trivial for m = 1. Since Ai
is of upper triangular form for every i, the equality (7) implies that at least
one of {(Ai)mm : i = 1, . . . , s} is non-zero (if not, the vector (0, 0, . . . , 1)t /∈∑s
i=1 ImAi = Cm, a contradiction). By re-indexing if necessary, we may as-

sume that (A1)mm 6= 0. Furthermore, the proof is still correct if we replace S
by S ′ = {A1, A2 − β2A1, . . . , As − βsA1} for every β2, . . . , βs ∈ C. Therefore,
we may assume from beginning that

(8)

{
(Ai)mm = 0 ∀i ≥ 2,
(A1)mm 6= 0.

Since A1Ai = AiA1 for every i, we have

(9) (A1Ai)jm = (AiA1)jm for every i, j.

Therefore, for every i, the last column of Ai is a linear combination of the
following columns: all the columns of A1 and the first (m− 1) columns of Ai.
It follows that

∑s
i=1 ImAi is spanned by the last column of A1 and the first

m− 1 columns of A1, . . . , As. We conclude from the equality (7) that Cm−1 is
spanned by the first (m− 1) columns of A1, . . . , As.

In other words, if we denote by Bi the (m − 1) × (m − 1) matrix obtained
by deleting the m-th column and m-th row of Ai for each 1 ≤ i ≤ s, then
{B1, B2, . . . , Bs} satisfies the following properties:

• it is a set of commuting (complex) matrices of dimension (m − 1) ×
(m− 1),

• each Bi is of upper triangular form for every i, and
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• Cm−1 is spanned by the columns of B1, B2, . . . , Bs, i.e.,

(10)

s∑
i=1

ImBi = Cm−1.

By induction, there are α1, α2, . . . , αs ∈ C so that α1B1+· · ·+αsBs is nonsingu-
lar. Remark that we can always choose α1 6= 0 (if α1 = 0, then α2B2+· · ·+αsBs
is nonsingular and hence, there exists α′1 6= 0 so that α′1B1 +α2B2 + · · ·+αsBs
is nonsingular because the equation det

(
B1 + x(α2B2 + · · · + αsBs)

)
= 0 has

finite solutions). With the assumption α1 6= 0 in hand, it follows immediately
from the equation (8) and from the nonsingularity of α1B1 + · · ·+ αsBs that

α1A1 + · · ·+ αsAs

is nonsingular, which proves the lemma. �

Proof of Theorem 3.2. Set m = dimG1. Throughout this proof, we fix a basis
{x1, x2, . . . , xn} of G so that G1 = 〈xn−m+1, xn−m+2, . . . , xn〉.

(i) By contradiction, assume that
∑
y∈G

Im ad1
y ( G1. Then there is an element

F ∈ (G)∗ so that

(11)

{
F 1 6= 0,
F |∑

y∈G
Im ad1

y
= 0.

If so, it is clear that

(12) F ([xi, xj ]) = 0, unless 1 ≤ i, j ≤ n−m.

It follows from Proposition 2.1 that k = dim ΩF ≤ n−m < k, a contradiction.
This proves the first item.

(ii) Let GC = 〈x1, . . . , xn〉C be the complexification of G. By Proposition
2.3, {ad1

xi
: i = 1, . . . , n−m} is a family of commuting endomorphisms of the

real type. Hence, there is a basis of G1C so that the matrix of adxi |G1
C

with

respect to that basis is of upper triangular form for every 1 ≤ i ≤ n −m (by
Proposition 2.4). It follows from the first item and Lemma 3.3 that there is a
complex linear combination x of x1, x2, . . . , xn−m so that adx|G1

C
is isomorphic.

Therefore, by using the same notation ad1
xi

(i = 1, . . . , n−m) for their matrices
with respect to that the basis {x1, . . . , xn}, we easily see that the polynomial

det(ζ1ad1
x1

+ · · ·+ ζn−mad1
xn−m

)

of variables ζ1, . . . , ζn−m does not vanish. Hence, there is α1, . . . , αn−m ∈ R so
that

(13) det(α1ad1
x1

+ · · ·+ αn−mad1
xn−m

) 6= 0.

This prove the existence of a real linear combination x′ of x1, x2, . . . , xn−m so
that ad1

x′ is nonsingular, as required.
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(iii) It follows from the second item proven above that we may assume (after
changing basis if necessary) ad1

x1
is nonsingular. Hence, for each j ≥ 2, there

are αj1, αj2, . . . , αjm ∈ R so that

(14) [x1, xj ] + αj1[x1, xn−m+1] + · · ·+ αjm[x1, xn] = 0.

Therefore, by basis changing x′j = xj +
∑m
i=1 αjixn−m+i if necessary, we can

assume from beginning that [x1, xj ] = 0 for all 1 ≤ j ≤ n − m. With this
assumption in hand, we may apply the Jacobi’s identity for (x1, xj , xk) to
obtain

(15) [x1, [xj , xk]] = 0 for all 1 ≤ j, k ≤ n−m.

It follows from the nonsingularity of ad1
x1

that [xj , xk] = 0 for all 1 ≤ j, k ≤
n−m. Hence, G is isomorphic to the semidirect sum of G1 with the commutative
subalgebra L := 〈x1, . . . , xn−m〉 ∼= Rn−m of G, as required. �

Theorem 3.2 gains in interest if we realize that, by fixing a basis {x1, x2, . . . , xn}
of the Lie algebra L⊕ρG1 so that L=〈x1, . . . , xn−m〉 and G1 =〈xn−m+1, . . . , xn〉,
the Kirilov’s matrix of any F ∈ (L ⊕ρ G1)∗ is of the following form[

0 MF

−(MF )t 0

]
,

where MF is some matrix of size (n−m)×m. It turns out that the dimension
of each ΩF depends on the rank of MF . More precisely, dim ΩF = 2 rankMF .

Besides, it is easily seen that the i-th row of MF is exactly(
F 1 ◦ ad1

xi
(xn−m+1), F 1 ◦ ad1

xi
(xn−m+2), . . . , F 1 ◦ ad1

xi
(xn)

)
,

or the (row) matrix of the form F 1 ◦ ad1
xi

on G1 with respect to the basis
{xn−m+1, . . . , xn}. Therefore, we can connect the rank of MF , as well as the
dimension of ΩF , with the maximum number of linearly independent matrices
in the set

{ad1
x1
, ad1

x2
, . . . , ad1

xn−m
}.

Remark that the vector space spanned by the above set and the vector space
spanned by the set S := {ad1

x : x ∈ L ⊕ρ G1} coincide. It follows that

(16) dim ΩF = 2 rankMF = 2 dimF 1(〈S〉),
where 〈S〉 denotes the vector space spanned by S, and F 1(〈S〉) denotes the
vector space {F 1 ◦ f : f ∈ 〈S〉}. In the following theorem, we will use the
maximum number mentioned above, which is equal to the dimension of 〈S〉, to
determine some interest properties of G, including the decomposition.

Theorem 3.4. Let G satisfy the hypothesis of Theorem 3.2 and let S be the
set of adjoint actions of all points in G, i.e., S = {ad1

x : x ∈ G}. Denote by m
the dimension of G1 and by r the dimension of the vector space spanned by S.
Then the following assertions hold.

(i) k ≤ 2r ≤ 2(n−m),
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(ii) r = n−m if and only if G is indecomposable,
(iii) 2r = k if and only if every non-zero element in the vector space spanned

by S is an automorphism on the vector space G1.

Proof. Followed by Theorem 3.2, G is a direct sum of two commutative subal-
gebras L and G1. By the second assertion in that theorem, we can fix a basis
{x1, . . . , xn} of G so that

(17)

{
L = 〈x1, . . . , xn−m〉,
G1 = 〈xn−m+1, . . . , xn〉,

and ad1
x1

is an automorphism on the vector space G1.
(i) Since G is spanned by {x1, x2, . . . , xn}, the real vector space spanned by

S, 〈S〉, is also spanned by {ad1
xi

: i = 1, 2, . . . , n}. Moreover, the commutation

of G1 implies that ad1
xi

= 0 for every n−m+ 1 ≤ i ≤ n. Hence,

(18) r ≤ n−m.

On the other hand, in the light of the equation (16), we easily see that, for any
F ∈ G∗ which does not vanish on G1,

(19) 0 6= dim ΩF = 2 dimF 1(〈S〉) ≤ 2 dim〈S〉 = 2r.

The inequalities (18) and (19) establish the formula in the first item.
(ii) By Theorem 3.1, we conclude that G is decomposable if and only if

G = K⊕R for some sub-algebra K ⊆ G. Hence, G is decomposable if and only
if there is an element x ∈ G \ G1 so that it is contained in the center of G.
Because x /∈ G1, we get

(20) x = y + z

for some 0 6= y ∈ L and for some z ∈ G1. Since x belongs to the center of G
and G1 is commutative, we obtain

(21) ad1
y = 0.

Therefore, G is decomposable if and only if the dimension of the vector space
spanned by

{ad1
x1
, . . . , ad1

xn−m
}

is strictly less than n−m, or r < n−m, which is our assertion.
(iii) In light of the equation (16), what we need to show is the following

statement: dimF 1(〈S〉) = dim(〈S〉) for every F ∈ (G)∗ with F 1 6= 0 if and
only if every non-zero element of 〈S〉 is an automorphism on the vector space
G1. Equivalently, dimF 1(〈S〉) < dim(〈S〉) for some F ∈ (G)∗ with F 1 6= 0 if
and only if there is a non-zero element f of 〈S〉 which is not an automorphism
on the vector space G1.

Indeed, the existence of a non-zero element f ∈ 〈S〉 which is not an auto-
morphism on the vector space G1 is equivalent to the existence of an element
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0 6= x ∈ G1 so that f(x) = 0, hence is equivalent to the existence of an element
F ∈ (G)∗ so that

(22)

{
F 1 6= 0,
F 1 ◦ f = 0.

If the equation (22) holds, then by choosing a basis for 〈S〉 which contains f , we
can see easily that the dimension of F 1(〈S〉) is strictly less than the dimension
of 〈S〉.

Conversely, if dimF 1(〈S〉) < dim(〈S〉), then there is a basis {f1, f2, . . . , fr}
of 〈S〉 so that

(23) F 1(αf1 + · · ·+ αrfr) = 0

for some non-zero (α1, . . . , αr) ∈ Rr. This proves the existence of a non-zero
element f ∈ 〈S〉 so that the equation (22) holds. The proof is completed. �

To close this subsection, let’s present the connection between 2-step MD-
algebras with 1-step MD-algebras in the next theorem.

Theorem 3.5. Let G be an MDk(n)-algebra. Then dimG2 ≤ n− k. Further-
more, the quotient Lie algebra H := G/G2 is also an MDk-algebra.

Proof. The assertion of the theorem is obviously true when G2 is trivial. There-
fore, we only need to consider the case dimG2 = p > 0. Denote by m the
dimension of G1 (m > p). Let’s fix a basis {x1, x2, . . . , xn} of G so that
G1 = 〈xn−m+1, . . . , xn〉 and G2 = 〈xn−p+1, . . . , xn〉. Since G2 is an ideal of
G, x∗n−m+1([xi, xj ]) = 0 for every i, j with 1 ≤ i ≤ n and n − p + 1 ≤ j ≤ n.
Therefore, by setting F = x∗n−m+1 we get

(24) BF =

[
M 0
0 0p×p

]
for some square matrix M of order n− p. It follows that the rank of BF is at
most n− p. On the other hand, because G is an MDk(n)-algebra and F 1 6= 0,
we have

(25) dim ΩF = k.

It follows from Proposition 2.1 that

(26) k = dim ΩF = rankBF ≤ n− p.
In other words,

(27) dimG2 ≤ n− k.
This proves the first part of the theorem.

To prove the second part, we still assume {x1, x2, . . . , xn} is a basis of G so
that {xn−m+1, . . . , xn} and {xn−p+1, . . . , xn}(p < m) are bases of G1 and G2,
respectively. It is standard to check that

(28) x∗q([xi, xj ])=x∗q([xi+G2, xj+G2]) for any 1 ≤ i, j ≤ n, and 1 ≤ q ≤ n−p,
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where x∗q is the corresponding element of x∗q in (H1)∗. Therefore, the dimensions
of the coadjoint orbits ΩF (of H) and ΩF (of G) are equal for any F ∈ (G)∗

with F |H1 6= 0. This completes the proof. �

3.2. The complete classification of all MDn−1(n)-algebras

Now, we will state the last main result of the paper, which gives the complete
classification of all indecomposable MDn−1(n)-algebras for n ≥ 4.

Theorem 3.6. Let G be an indecomposable MDn−1(n)-algebra with n ≥ 4.
Then G is isomorphic to one of the followings:

(i) The real Heisenberg Lie algebra

h2m+1 = 〈xi, yi, z : i = 1, . . . ,m〉,

where non-zero Lie brackets are given by [xi, yi] = z for every 1 ≤ i ≤
m.

(ii) The Lie algebra

s5,45 = 〈x1, x2, y1, y2, z〉,

where non-zero Lie brackets are given by

[x1, y1] = y1, [x1, y2] = y2, [x1, z] = 2z, [x2, y1] = y2, [x2, y2] = −y1, [y1, y2] = z.

Proof. The proof will be divided into 3 cases.
• Case 1. Assume dimG1 = 1. Followed by the classifications of solvable

real Lie algebras having 1-dimensional derived ideal in [29], we easily see that
G is isomorphic to h2m+1 with 2 ≤ m ∈ N because G is indecomposable and
n ≥ 4.
• Case 2. Assume that G1 is commutative and dimG1 ≥ 2. We will show

that this case is excluded.
We first claim that dimG is exactly five. Indeed, according to Theorem 3.2,

one can see that G = L ⊕ρ G1 where L is a commutative subalgebra of G with
L ∩ G1 = {0}. Hence, we can choose a basis b = {x1, x2, . . . , xn} of G so that

(29)

{
G1 = 〈xn−m+1, xn−m+2, . . . , xn〉,
L = 〈x1, x2, . . . , xn−m〉.

Because both G1 and L are commutative, we have

(30) [xi, xj ] = 0 if

{
1 ≤ i, j ≤ n−m,
n−m+ 1 ≤ i, j ≤ n.

On the other hand, the commutation of G1 implies that {ad1
x : x ∈ L} is a

family of commuting endomorphisms (Proposition 2.3). As a consequence of
the second item of Proposition 2.4, we can assume that the matrix of ad1

xi
with

respect to the basis b is of block upper triangular form in which each block is
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of size up to 2, for every 1 ≤ i ≤ n − k. With this assumption in hand, the
equality (30) implies that

(31) x∗n([xi, xj ]) = 0 if

{
1 ≤ i, j ≤ n− 2,
n− 1 ≤ i, j ≤ n.

Therefore,

(32) 0 6= dim Ωx∗n = rankBx∗n ≤ 4.

Hence, n− 1 = dim Ωx∗n ≤ 4, or n ≤ 5. Since dim ΩF is even for every F ∈ G∗
and n ≥ 4, n must be equal to 5.

To the best of our knowledge, all 1-step solvable real Lie algebras of dimen-
sion 5 are completely classified by Jacqueline Dozias [8, 23]. In particular, L.
A. Vu and K. P. Shum gave the classification of 1-step solvable MD-algebras of
dimension 5 in [30]. According to their classification, there is no indecompos-
able 1-step solvable MD-algebra of dimension 5 so that its maximal dimension
of K-orbits is 4. Therefore, this case is excluded.
• Case 3. Assume that G1 is non-commutative. If so, dimG1 ≥ 2 and

dimG2 ≥ 1. It follows from Theorem 3.5 that dimG2 ≤ dimG − dim ΩF = 1
for every 0 6= F ∈ (G1)∗. Hence, dimG2 = 1 and H = G/G2 is a solvable real
Lie algebra in which dimH = n−1 = dim ΩF for every 0 6= F ∈ (G1)∗. In other
word, H is an indecomposable SMD-algebra. It follows from [24, Theorem 1]
that n− 1 = dimH ≤ 4. Hence, n ≤ 5. Once again, by using the classification
of 5-dimensional Lie algebras in [8, 23], especially of those in which the first
derived ideal is non-commutative in [29], we get exactly one 5-dimensional Lie
algebra satisfying the requirement which is defined in item 3.6. Remark that
this algebra is denoted as s5,45 in [23] and the proof is complete. �

Remark 3.7. To sharpen Theorem 3.6, using Theorem 3.1, we complete the
paper by the following remarks.

(i) All solvable Lie algebras of dimension 3 are obviously MD-algebras.
Therefore, except R3 (the real 3-dimensional abelian Lie algebra), all
the remaining solvable non-abelian ones are MD2(3)-algebras. One can
find their classification in [23].

(ii) Any decomposable MDn−1(n)-algebra is a direct sum of R and an inde-
composable non-abelian SMD-algebra of dimension n−1. Therefore, by
applying directly the classification of SMD-algebras in [24, Theorem 1],
we easily see that any decomposable MDn−1(n)-algebra is isomorphic
to either aff(R)⊕ R for n = 3 or aff(C)⊕ R for n = 5 where

– aff(R) = 〈x, y〉 is defined by [x, y] = y;
– aff(C) = 〈x1, x2, y1, y2〉 is defined by [x1, x2] = [y1, y2] = 0, [x1, y1]

= y1, [x1, y2] = y2, and [x2, y1] = y2, [x2, y2] = −y1.
(iii) The nilradical of the Lie algebra s5,45 is equal to its derived algebra

s15,45, which is also the unique Heisenberg Lie algebra of dimension 3.
Therefore, s5,45 is a solvable extension of the Heisenberg Lie algebra
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h3. For more details about solvable extensions of nilradicals, we refer
readers to [15–17,22].
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