Browse > Article
http://dx.doi.org/10.4134/CKMS.c210308

CLASSIFICATION OF SOLVABLE LIE GROUPS WHOSE NON-TRIVIAL COADJOINT ORBITS ARE OF CODIMENSION 1  

Ha, Hieu Van (Faculty of Economic Mathematics University of Economics and Law and Vietnam National University)
Hoa, Duong Quang (Department of Mathematics Hoa Sen University)
Le, Vu Anh (Faculty of Economic Mathematics University of Economics and Law and Vietnam National University)
Publication Information
Communications of the Korean Mathematical Society / v.37, no.4, 2022 , pp. 1181-1197 More about this Journal
Abstract
We give a complete classification of simply connected and solvable real Lie groups whose nontrivial coadjoint orbits are of codimension 1. This classification of the Lie groups is one to one corresponding to the classification of their Lie algebras. Such a Lie group belongs to a class, called the class of MD-groups. The Lie algebra of an MD-group is called an MD-algebra. Some interest properties of MD-algebras will be investigated as well.
Keywords
MD-algebras; coadjoint orbits; classification of Lie group;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Arnal, M. Cahen, and J. Ludwig, Lie groups whose coadjoint orbits are of dimension smaller or equal to two, Lett. Math. Phys. 33 (1995), no. 2, 183-186. https://doi.org/10.1007/BF00739806
2 G. Belitskii, R. Lipyanski, and V. Sergeichuk, Problems of classifying associative or Lie algebras and triples of symmetric or skew-symmetric matrices are wild, Linear Algebra Appl. 407 (2005), 249-262. https://doi.org/10.1016/j.laa.2005.05.007
3 P. A. Brooksbank, J. Maglione, and J. B. Wilson, A fast isomorphism test for groups whose Lie algebra has genus 2, J. Algebra 473 (2017), 545-590. https://doi.org/10.1016/j.jalgebra.2016.12.007   DOI
4 J. Dozias, Sur les derivations des algebres de Lie, C. R. Acad. Sci. Paris 259 (1964), 2748-2750.
5 V. Futorny, T. Klymchuk, A. P. Petravchuk, and V. V. Sergeichuk, Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras, Linear Algebra Appl. 536 (2018), 201-209. https://doi.org/10.1016/j.laa.2017.09.019
6 M. Goze and E. Remm, Coadjoint orbits of Lie algebras and Cartan class, SIGMA Symmetry Integrability Geom. Methods Appl. 15 (2019), Paper No. 002, 20 pp. https://doi.org/10.3842/SIGMA.2019.002
7 A. A. Kirillov and Y. A. Neretin, The veriety An of n-dimensional Lie algebra structures, AMS Translations 137 (1987), no. 2, 21-30.
8 G. M. Mubarakzjanov, On solvable Lie algebras, Izv. Vyss. Ucehn. Zaved. Matematika 1963 (1963), no 1 (32), 114-123.
9 G. M. Mubarakzjanov, Classification of solvable Lie algebras of sixth order with a nonnilpotent basis element, Izv. Vys. Uchebn. Zav. Mat. 4 (1963), 104-116.
10 M. Newman, Two classical theorems on commuting matrices, J. Res. Nat. Bur. Standards Sect. B 71B (1967), 69-71.
11 L. Snobl and P. Winternitz, Solvable Lie algebras with Borel nilradicals, J. Phys. A: Mathematical and Theoretical 45 (2012), no. 9.
12 P. Turkowski, Solvable Lie algebras of dimension six, J. Math. Phys. 31 (1990), no. 6, 1344-1350. https://doi.org/10.1063/1.528721
13 G. Belitskii, A. R. Dmytryshyn, R. Lipyanski, V. V. Sergeichuk, and A. Tsurkov, Problems of classifying associative or Lie algebras over a field of characteristic not two and finite metabelian groups are wild, Electron. J. Linear Algebra 18 (2009), 516-529. https://doi.org/10.13001/1081-3810.1329
14 A. Connes, A survey of foliations and operator algebras, in Operator algebras and applications, Part I (Kingston, Ont., 1980), 521-628, Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, RI, 1982.
15 W. A. de Graaf, Classification of solvable Lie algebras, Experiment. Math. 14 (2005), no. 1, 15-25. http://projecteuclid.org/euclid.em/1120145567
16 L. Snobl and P. Winternitz, Classification and identification of Lie algebras, CRM Monograph Series, 33, American Mathematical Society, Providence, RI, 2014. https://doi.org/10.1090/crmm/033
17 V. M. Son and H. H. Viet, Sur la structure des C-algebres d'une classe de groupes de Lie, J. Operator Theory 11 (1984), no. 1, 77-90.
18 H. Radjavi and P. Rosenthal, Simultaneous Triangularization, Universitext, SpringerVerlag, New York, 2000. https://doi.org/10.1007/978-1-4612-1200-3
19 E. Remm, On filiform Lie algebras. Geometric and algebraic studies, Rev. Roumaine Math. Pures Appl. 63 (2018), no. 2, 179-209.
20 L. A. Vu, On the foliations formed by the generic K-orbits of the MD4-groups, Acta Math. Vietnam. 15 (1990), no. 2, 39-55.
21 L. A. Vu, On the foliations by the generic K-orbits of a class of solvable Lie groups, Moscow Univ. Math. Bull. 48 (1993), no. 3, 24-27; translated from Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1993, no. 3, 26-29, 104-105.
22 L. A. Vu, H. V. Hieu, and T. T. H. Nghia, Classification of 5-dimensional MD-algebras having non-commutative derived ideals, East-West J. Math. 13 (2011), no. 2, 118-132.
23 L. A. Vu, H. V. Hieu, N. A. Tuan, C. T. T. Hai, and N. T. M. Tuyen, Classification of real solvable Lie algebras whose simply connected Lie groups have only zero or maximal dimensional coadjoint orbits, Revista de la Union Matematica Argentina 57 (2016), no. 2, 119-143.
24 L. A. Vu and K. P. Shum, Classification of 5-dimensional MD-algebras having commutative derived ideals, in Advances in algebra and combinatorics, 353-371, World Sci. Publ., Hackensack, NJ, 2008.
25 G. M. Mubarakzjanov, Classification of real structures of Lie algebras of fifth order, Izv. Vys. Uchebn. Zav. Mat. 3 (1963), 99-106.
26 T. A. Nguyen, V. A. Le, and T. N. Vo, Testing Isomorphism of complex and real Lie algebras, Preprint 2021, https://arxiv.org/pdf/2102.10770.pdf.
27 L. Boza, E. M. Fedriani, J. Nunez, and F. Tenorio, A historical review of the classifications of Lie algebras, Rev. Un. Mat. Argentina 54 (2013), no. 2, 75-99.
28 D. N. Diep, Methods of noncommutative geometry for group C-algebras, Chapman & Hall/CRC Research Notes in Mathematics, 416, Chapman & Hall/CRC, Boca Raton, FL, 2000.
29 M.-P. Gong, Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed field and ℝ), Ph.D. Thesis, University of Waterloo, 1989.
30 A. A. Kirillov, Elements of the Theory of Representations, translated from the Russian by Edwin Hewitt, Grundlehren der Mathematischen Wissenschaften, Band 220, Springer-Verlag, Berlin, 1976.