Bull. Korean Math. Soc. 32 (1995), No. 2, pp. 163-170

NON-OVERLAPPING CONTROL SYSTEMS ON Aff(R)

YouNKl CHAE AND YONGDO LIM

1. Introduction

Let G be a Lie group with Lie algebra L(G) and let Q be a non-
empty subset of L(G). If Q is interpreted as the set of controls, then
the set of elements attainable from the identity for the system Q is a
subsemigroup of G. A system  is called a non-overlapping control
system if any element attainable for  is only attainable at one time.
In 1], we showed that a compact, convex generating non-overlapping
control systems on a connected solvable Lie group must be contained in
X +E, where E is a subspace of codimension cne containing the commu-
tator and the homomorphism from the attainable semigroup into R*
extends continuously to the whole group. In this paper, we show that
in af f(R), the unique two dimensional non—abelian Lie algebra, a non-
overlapping control system must be containec in X +[af f(R),af f(R)]
and the homomorphism from the attainable semigroup into R* extends
continuously to Aff(R).

Let G be a Lie group with Lie algebra L{G). Normally we identify
L(G) with the set of right invariant vector fields on G. For a non—empty
subset 1 of L(G), we consider the control system on G given by the
differential equation

2(t) = U(t)((1)), (%)

where U belongs to the class U(§2) of measurable functions from Rt =
[0,00) into 2 which are locally bounded. A solution of () is an abso-
lutely continuous function x(-) defined on R¥ such that the equation
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(%) holds almost everywhere. In [8], for U € U(2), it is known that
there exists a unique solution z(-) on G of the initial value problem

2'(t) = U(t)(x(t), =(0)=yg.

We denote this solution by 7(g¢,-,U), t.e., 7(¢g,0,U) = g and n(g,t,U)
= z(t) for all t € R*. If there exists U € U(§2) such that h = 7(g,t,U),
then we say that h is attainable from g at time t for the system §2. The
set of such elements attainable from ¢ at time ¢ for the system 2 ( resp.

using only piecewise constant controls into §2) is denoted A(g,t,€2) (
resp. Apc(g,t,8)). We also employ the notation

A, T.) = ., ,Alg,1.9)

A(g, ) = Alg,t, )

0<t<o0

The set A(g, ) is called the attainability set from g. From the right in-
variance of the control system, A(g,T,Q) = A(e,T,Q)g, and A(g,2) =
A(e,Q)g. Thus we restrict our attention to the attainability set at the
identity.

For a non—empty subset € of L(G), we have the one-parameter semi-
group of sets t — A(e, t,Q). That is, A(e, s, Q)A(e,t,Q) = Ae, s +1,2)
for all s,# € R™ ([5],(8]). This implies that the attainability set at the
identity is a subsemigroup of G and S(§) := A(e, Q) is called the at-
tainable semigroup for . In this paper, we say that Q generates L(G)
if L(G) is the smallest subalgebra containing 2.

2. Non-overlapping control systems on Aff(R)

We start by summarizing the useful properties concerning control
systems on Lie groups. The following results could be found in [5].

PROPOSITION 1. Let Q be a non-empty subset of L(G) and Q be
its closed convex hull. Then
(1) Ape(e.t,Q) = {exp(t1X1) - -exp(taXn) s o ti = t,t; € RY,
X1y, Xy € Q} and Apc(e,§2) is equal to the semigroup gen-
erated by the set exp RTQ.
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(2) Apcle,t,Q) is dense in A(e,t,ﬁ).

(3) Apc(e, ) is dense in both A(e,2) and A(e, Q).

(4) If Q generates L(G), then A(e, ﬁ) has non-empty interior and
is equal to intA,.(e, 2).

(5) If Q is compact and convex, then A(e, T,§2) and A(e,T,Q) are
compact.

(6) If Xy, -, X, € Q form a basis for L(G) and X = Y., t: Xi,
where t; > 0 for eacht = 1,--- ,n and t = Z?:lti’ then
exp X € intA, (e, s,Q) for each s > 1.

DEFINITION. Let G be a Lie group with its Lie algebra L(G). A
non-empty subset  of L(G) is called a non-overlapping control sys-
tem ( abbreviated NOC set) if the corresponding members of the one-
parameter semigroup t — A(e,t,§2) are pairwise disjoint.

LEMMA 1. Let Q be a NOC set of L(G). Then

(1) The map hq from S(Q) onto R*, A(e,t,Q) — t is a well-
defined homomorphism.

(2) S(Q)NS(Q)~! = {e}. In particular, z:ro is not contained in .

(3) Any two vectors in ) are not contained in a one dimensional
subspace of L(G).

(4) Every subset of NOC set is a NOC set.

Proof. (1) If © is a NOC set, then any element attainable for
is only attainable at one time. Thus the map A(e,t,2) — t is a well-
defined homomorphism from S(2) onto R*. (2) Let 2 € S(Q)NS()~'.
Then = € A(e,t,Q) and 27! € A(e, s,9) for some s, € RT. Since e =
zz~t € Ale,t,)Ale,s,9Q) = Ale,s+t,Q), A(¢,0,Q)NA(e, s+, Q) # ¢.
Therefore 0 = s+t and hence s = ¢ = 0. Note that 4,.(¢,0,0) = {e} is
dense in A(e,0,8) from Proposition 1. This :mplies that A(e,0,Q) =
{e} and hence @ = e. To prove (3), let Xy, X3 € © such that X, = tX
for some t # 1. If t > 0,exp Xy = exptX; € A(e,1,2) N A(e. t,Q2). If
t < 0,exp Xoexp(—1)X1 = ¢ € A(e,0,Q2) N Ale,1 —¢,9). Since Q is a
NOC set, which is a contradiction. Finially, since A(e,t, K) C A(e,t, Q)
for any subset I of 2, it is clear that every subset of NOC set is a NOC
set.
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Let Aff(R) denote the unique 2-dimensional non-abelian connected
Lie group. It may be identified with the set of ordered pairs {(z,vy) €
R? | z > 0} with multiplication (a, b)(z,y) = (ax,ay +b). Let af f(R)
denote the Lie algebra of Aff(R). We may identify it with {(a,b) €
R? | a,b € R} under the Lie bracket [(a,b),(z,y)] = (0,ay — bx).
A direct calculation yields exp A = (e%, 2(e® ~ 1)), where A = (a,b)
and exp is a diffeomorphism. Hence exp W is a closed subsemigroup of
Af f(R) for any wedge W ( closed, convex, contains 0, and is additively

closed) in af f(R)[3).

LEMMA 2. Inaff(R), the following conclusions hold:

(1) Every non-zero singleton set in af f(R) is a NOC set.

(2) Every non-singleton NOC set generates af f(R).

(3) IfQ is a non-empty subset of af f(R) such that Q has non-
empty interior, then there exist a three vectors Xy, X1, Xy € Q2
such that the closed convex hull of { Xo, X1, X2} has non-empty
interior.

Proof. (1) Let 0 # X € af f(R). Then A(e,t,{X}) = exptX. Since
exp is a diffeomorphism, {X} is a NOC set. (2) From Lemma 1, every
non-singleton NOC set generates af f(R). (3) Suppose Q has non-
empty interior. Then we can select a basis {Xg, X1} in 2. Since Q has
non-empty interior, we can choose a vector X, € 2 such that X, is not
contained in the straight line through Xy and X,. Trivially, the closed
convex hull of {Xy, X, X;} has non-empty interior.

The following Lemma shows that a closed convex hull of NOC set in
af f(R) has empty interior. This implies that a closed convex hull of a
NOC set in af f(R) is contained in a straight line.

LEMMA 3. Let Q be a NOC set of af f(R). Then Q has empty
interior.

Proof. Suppose that Q has non-empty interior. By above note, we
may assume that @ = {X,, X, X}. Let W = RTX,+RTX,;+RYX,.
Then W # af f(R). If not, then RTQ = af f(R) and hence Aff(R) =
Ale, ﬁ) = Afe,2) because Ale, ﬁ) and A(e, 2) have the same interior.
Therefore we may assume that W = RTX; + RT X, and Xy € intW.
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Since {X7, X2} is a basis for af f(R), Xo = s.X1 + t.X; for some s,t €
R+ If s+1t=1, then Q) has empty interior. Suppose s +1 < 1. Sm(e
Q) has interior, we find small s +t < u < 1 such that Xy € u(zntQ)
Then exp Xo € ntA,(e,u,2) C A(e,u,Q) by Proposition 1. This
is a contradiction from exp Xy € A(e,1,§). Suppose s +¢ > 1. Since
Ale,1,9) is dense in A(e, 1, KAZ), we can choose ¥ in intQN W’ such that
expY € A(e,1,Q), where W' = RtX,+ R*tX,. Then Y lies below of
the line segment joining Xo and Xi. Since {Xo,X1} is a basis for
af f(R), Y = t'Xy+ ' X, for some ', t' € RY and ¢/ +¢' < 1. Similiary
we have a contradition.

For a non-empty subset Q of L(G), if {2 is interpreted as the set of
controls, then it is an important problem to know whether A(e, Q) =

A,(e,Q) ? In the language of control theory, we are asking if piecewise
constant bang-bang controls suffice to reach all points in the attain-
able set. A semigroup formulation is whether each member of S( Q)
can be written as a finite product of elements from exp(R*Q). In (4],
it is known that if a compact subset § of L{F) has the bounded fuc-
torization property (that is, there exists T > 0 and an m > 1 such
that any product exp(t; X1) - exp(ty 41X p41) with Z'"H t, <T and
Xy, o, Xma1 € Qcan be written as a product exp(s1¥y) - - expl&mYm)s
where Z:r;] 8 = zm+1 t; and Yy, -+, Y, € Q.), then for cach t > 0.
Apele,t, Q) = A(e, t,9) and A,o(c, Q) = Ale, ).

Let W be an arbitrary wedge in «f f(R) with its bounding rays
{tX :t € RT}, {tY : t € RT}. In[2], I.Chon showed that if TV ﬂI = {0},
where I = {(0,y) : y € R}(it 15 the commutator of af f(R)). then
expW = exp(RTX)exp(R*Y) = exp(RTY )exp(RTX). Using this
result, we have a useful lemma for our approach.

LEMMA 4. If Q = {X,Y} is a NOC set in af f(R) and QNI =o,
then Q@ has the bounded factorization pIO})PI ty and hence for each
t >0, Apele,t,2) = Ale, ¢, Q) and A, (e, 1) = Ale, Q) Hence Q0 is a
NOC set.

Proof. Since Qis a NOC set, for any triple product exp t.X exp sY exp
uX, it is equal to exptX expu' X exps'Y = exp(t + «')X exp 'Y, for
some s u' € R such that s+ u = &' +u'. Thus t+s+u = (t+u')+5'
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and heEce {2 has the bounded factorization property. This implies that
A(e,t,Q) = A(e,t,Q) for any ¢ > 0, and hence § is a NOC set.

LEMMA 5. Let X = (0,a) € I,LY = (z,y) with z # 0. Then
expY exp X = exp(e*X)expV.

Proof. Straightforward.

LEMMA 6. Let X = (21,22),Y = (y1,42) € Q. If2; <O0andy, >0
orzy >0,y <0, then Q is not NOC set.

Proof. If z; = 0, then X € QN I. By Lemma 5, expYexpX =
exp(e¥* X)expY € A(e,2,2) N A(e,e¥ + 1,Q). Since y1 > 0,9 is not
NOC set. Suppose z; < 0. Then the closed convex hull of {X 1}
meets with [ at Z = (0,a). If @ = 0, then X and Y lie in the one-
dimensional subspace of af f(R) and hence § is not NOC set from
Lemma 1. Suppose Q is a NOC set. From Lemma 5, expY exp Z =
exp(e¥' Z)expY and hance exp Z,exp(e¥' Z) € A(e,t,?) for some t > 0.
However, exp(e?')Z = exp Z exp((0, ¥ a — a)) and exp((0, V'« — a)) €
A(e, s,Q) for some s > 0. Therefore A(e,t, Q)N A(e, t+4 s, Q) # 6. Since

y1 > 0, this is a contradiction.

THEOREM 1. Let  bea NOC set inaff(R). Then @ C X +1

for some non-zero vector X.

Proof. If Q does not generate af f(R), then Q = {X} for some non-
zero vector X. Suppose that © generates af f(R). Since Q has empty
interior, it is a subset of a straight line. If QNI # ¢, then we can
choose X} = (z1,y1), X2 = (22,y2) € Q such that 2; < 0,22 > 0. By
Lemma 6, {X;, X2} is not NOC set. This is a contradiction. Therefore,
QNI = $. Since §2 generates «f f(R), we have a distinct two vectors
X1,X2 € Q. Then the closed convex hull of {X1, X2} does not meet
with I. By Lemma 4, it is a NOC set and hence from the following
Theorem, it is contained in X +1 for some non-zero vector X. Therefore
Q C Q C X +1 because ) is a subset of a straight line.

THEOREM 2. Let G be a connected solvable Lie group. Then
a compact, convex generating NOC set must be contained in X + E,
where E is a subspace of codimension one containing the commutator.

Proof. See [1].
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In [1], we showed that for a bounded subset § of a Lie algebra L(G)
of Lie group G, is a NOC set and hg extends continuously to G if
and only if there exists a continuous Lie group homomorphism from
G into R such that its differential map has a non-zero constant value
on . From Lemma 1, for any NOC set Q in af f(R), it is contained
in X + I for some non-zero vector X € aff(R). Since I is an ideal
of af f(R), we have a continuous Lie algebra homomorphism f from
af f(R) to R,tX +Y — ¢t. Since Aff(R) 1s a simple connected Lie
group, we have a continuous Lie group homomorphism from G to R
such that its differential is f. Clearly f(2) = 1 and hence we conclude
that hg extends continuously to the whole group if €2 is bounded. More
generally, the following conclusion holds:

THEOREM 2. Let Q bea NOC set. Then hg is continuous and
it extends continuously to Af f(R).

Proof. The map f from af f(R) to R, tX +Y — ¢ is a continuous
homomorphism. Hence there exists a continuous Lie group homomor-
phism & : Aff(R) — R such that hoexp = f, where exp is the
exponenal map of Lie group Aff(R). Let € A,.(¢e,t,Q). Then 2 =
expt1 X; - --expt,X,, where ZZ':I ti=tand .X; € Qfor:=1,2,--- ,n.
Since h{expt;X;) = t;,h(z) = . Thus A,.(e,t,2) C h~1(t). By Propo-
sition 1, Apc(e,t,92) is dense in A(e,t,Q) and 27! (¢) is closed, we have
that h(A(e,t,Q)) = t, for each t € R™. This implies that hg = h|sq)
extends continuously to Af f(R).
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