NON-OVERLAPPING CONTROL SYSTEMS ON Aff(R)

YOUNKI CHAE AND YONGDO LIM

1. Introduction

Let G be a Lie group with Lie algebra L(G) and let Ω be a non-empty subset of L(G). If Ω is interpreted as the set of controls, then the set of elements attainable from the identity for the system Ω is a subsemigroup of G. A system Ω is called a non-overlapping control system if any element attainable for Ω is only attainable at one time. In [1], we showed that a compact, convex generating non-overlapping control systems on a connected solvable Lie group must be contained in $X+\mathbf{E}$, where \mathbf{E} is a subspace of codimension one containing the commutator and the homomorphism from the attainable semigroup into \mathbf{R}^+ extends continuously to the whole group. In this paper, we show that in $aff(\mathbf{R})$, the unique two dimensional non-abelian Lie algebra, a non-overlapping control system must be contained in $X+[aff(\mathbf{R}),aff(\mathbf{R})]$ and the homomorphism from the attainable semigroup into \mathbf{R}^+ extends continuously to $Aff(\mathbf{R})$.

Let G be a Lie group with Lie algebra L(G). Normally we identify L(G) with the set of right invariant vector fields on G. For a non-empty subset Ω of L(G), we consider the control system on G given by the differential equation

$$x'(t) = U(t)(x(t)), \tag{*}$$

where U belongs to the class $\mathcal{U}(\Omega)$ of measurable functions from $\mathbf{R}^+ = [0, \infty)$ into Ω which are locally bounded. A solution of (*) is an absolutely continuous function $x(\cdot)$ defined on \mathbf{R}^+ such that the equation

Received December 2, 1993.

¹⁹⁹¹ AMS Subject Classification: 54H15.

Key words: control system.

This work is done under the support of TGRC-KOSEF and the Korea Research Foundation, the Ministry of Education.

Younki Chae and Yongdo Lim

(*) holds almost everywhere. In [8], for $U \in \mathcal{U}(\Omega)$, it is known that there exists a unique solution $x(\cdot)$ on G of the initial value problem

$$x'(t) = U(t)(x(t)), x(0) = g.$$

We denote this solution by $\pi(g,\cdot,U)$, i.e., $\pi(g,0,U)=g$ and $\pi(g,t,U)=x(t)$ for all $t\in\mathbf{R}^+$. If there exists $U\in\mathcal{U}(\Omega)$ such that $h=\pi(g,t,U)$, then we say that h is attainable from g at time t for the system Ω . The set of such elements attainable from g at time t for the system Ω (resp. using only piecewise constant controls into Ω) is denoted $A(g,t,\Omega)$ (resp. $A_{pc}(g,t,\Omega)$). We also employ the notation

$$\begin{split} \mathbf{A}(g,T,\Omega) = & \bigcup_{0 \leq t \leq T} A(g,t,\Omega) \\ \mathbf{A}(g,\Omega) = & \bigcup_{0 < t < \infty} A(g,t,\Omega) \end{split}$$

The set $\mathbf{A}(g,\Omega)$ is called the attainability set from g. From the right invariance of the control system, $A(g,T,\Omega)=A(e,T,\Omega)g$, and $\mathbf{A}(g,\Omega)=\mathbf{A}(e,\Omega)g$. Thus we restrict our attention to the attainability set at the identity.

For a non-empty subset Ω of L(G), we have the one-parameter semi-group of sets $t \to A(e,t,\Omega)$. That is, $A(e,s,\Omega)A(e,t,\Omega) = A(e,s+t,\Omega)$ for all $s,t \in \mathbf{R}^+$ ([5],[8]). This implies that the attainability set at the identity is a subsemigroup of G and $S(\Omega) := \mathbf{A}(e,\Omega)$ is called the attainable semigroup for Ω . In this paper, we say that Ω generates L(G) if L(G) is the smallest subalgebra containing Ω .

2. Non-overlapping control systems on $Aff(\mathbf{R})$

We start by summarizing the useful properties concerning control systems on Lie groups. The following results could be found in [5].

PROPOSITION 1. Let Ω be a non-empty subset of L(G) and $\widehat{\Omega}$ be its closed convex hull. Then

(1) $A_{pc}(e, t, \Omega) = \{\exp(t_1 X_1) \cdots \exp(t_n X_n) : \sum_{i=1}^n t_i = t, t_i \in \mathbf{R}^+, X_1, ..., X_n \in \Omega\}$ and $\mathbf{A}_{pc}(e, \Omega)$ is equal to the semigroup generated by the set $\exp \mathbf{R}^+\Omega$.

Non-overlapping control systems on $Aff(\mathbf{R})$

- (2) $A_{pc}(e,t,\Omega)$ is dense in $A(e,t,\widehat{\Omega})$.
- (3) $\mathbf{A}_{pc}(e,\Omega)$ is dense in both $\mathbf{A}(e,\Omega)$ and $\mathbf{A}(e,\widehat{\Omega})$.
- (4) If Ω generates L(G), then $\mathbf{A}(e,\widehat{\Omega})$ has non-empty interior and is equal to $int\mathbf{A}_{pc}(e,\Omega)$.
- (5) If Ω is compact and convex, then $A(e, T, \Omega)$ and $A(e, T, \Omega)$ are compact.
- (6) If $X_1, \dots, X_n \in \Omega$ form a basis for L(G) and $X = \sum_{i=1}^n t_i X_i$, where $t_i > 0$ for each $i = 1, \dots, n$ and $t = \sum_{i=1}^n t_i$, then $\exp X \in int \mathbf{A}_{pc}(e, s, \Omega)$ for each s > t.

DEFINITION. Let G be a Lie group with its Lie algebra L(G). A non-empty subset Ω of L(G) is called a non-overlapping control system (abbreviated NOC set) if the corresponding members of the one-parameter semigroup $t \to A(\epsilon, t, \Omega)$ are pairwise disjoint.

LEMMA 1. Let Ω be a NOC set of L(G). Then

- (1) The map h_{Ω} from $S(\Omega)$ onto \mathbf{R}^+ , $A(\epsilon, t, \Omega) \to t$ is a well-defined homomorphism.
- (2) $S(\Omega) \cap S(\Omega)^{-1} = \{e\}$. In particular, zero is not contained in Ω .
- (3) Any two vectors in Ω are not contained in a one dimensional subspace of L(G).
- (4) Every subset of NOC set is a NOC set.

Proof. (1) If Ω is a NOC set, then any element attainable for Ω is only attainable at one time. Thus the map $A(e,t,\Omega) \to t$ is a well-defined homomorphism from $S(\Omega)$ onto \mathbf{R}^+ . (2) Let $x \in S(\Omega) \cap S(\Omega)^{-1}$. Then $x \in A(e,t,\Omega)$ and $x^{-1} \in A(e,s,\Omega)$ for some $s,t \in \mathbf{R}^+$. Since $e = xx^{-1} \in A(e,t,\Omega)A(e,s,\Omega) = A(e,s+t,\Omega), A(e,0,\Omega) \cap A(e,s+t,\Omega) \neq \phi$. Therefore 0 = s+t and hence s = t = 0. Note that $A_{pc}(e,0,\Omega) = \{e\}$ is dense in $A(e,0,\Omega)$ from Proposition 1. This implies that $A(e,0,\Omega) = \{e\}$ and hence x = e. To prove (3), let $X_0, X_1 \in \Omega$ such that $X_0 = tX_1$ for some $t \neq 1$. If t > 0, $\exp X_0 = \exp tX_1 \in A(e,1,\Omega) \cap A(e,t,\Omega)$. If t < 0, $\exp X_0 \exp(-t)X_1 = e \in A(e,0,\Omega) \cap A(e,1-t,\Omega)$. Since Ω is a NOC set, which is a contradiction. Finially, since $A(e,t,K) \subset A(e,t,\Omega)$ for any subset K of Ω , it is clear that every subset of NOC set is a NOC set.

Younki Chae and Yongdo Lim

Let $Aff(\mathbf{R})$ denote the unique 2-dimensional non-abelian connected Lie group. It may be identified with the set of ordered pairs $\{(x,y) \in \mathbf{R}^2 \mid x > 0\}$ with multiplication (a,b)(x,y) = (ax,ay+b). Let $aff(\mathbf{R})$ denote the Lie algebra of $Aff(\mathbf{R})$. We may identify it with $\{(a,b) \in \mathbf{R}^2 \mid a,b \in \mathbf{R}\}$ under the Lie bracket [(a,b),(x,y)] = (0,ay-bx). A direct calculation yields $\exp A = (e^a, \frac{b}{a}(e^a-1))$, where A = (a,b) and \exp is a diffeomorphism. Hence $\exp W$ is a closed subsemigroup of $Aff(\mathbf{R})$ for any wedge W (closed, convex, contains 0, and is additively closed) in $aff(\mathbf{R})[3]$.

LEMMA 2. In $aff(\mathbf{R})$, the following conclusions hold:

- (1) Every non-zero singleton set in $aff(\mathbf{R})$ is a NOC set.
- (2) Every non-singleton NOC set generates $aff(\mathbf{R})$.
- (3) If Ω is a non-empty subset of $aff(\mathbf{R})$ such that $\widehat{\Omega}$ has non-empty interior, then there exist a three vectors $X_0, X_1, X_2 \in \Omega$ such that the closed convex hull of $\{X_0, X_1, X_2\}$ has non-empty interior.

Proof. (1) Let $0 \neq X \in aff(\mathbf{R})$. Then $A(e,t,\{X\}) = \exp tX$. Since exp is a diffeomorphism, $\{X\}$ is a NOC set. (2) From Lemma 1, every non-singleton NOC set generates $aff(\mathbf{R})$. (3) Suppose $\widehat{\Omega}$ has non-empty interior. Then we can select a basis $\{X_0, X_1\}$ in Ω . Since $\widehat{\Omega}$ has non-empty interior, we can choose a vector $X_2 \in \Omega$ such that X_2 is not contained in the straight line through X_0 and X_1 . Trivially, the closed convex hull of $\{X_0, X_1, X_2\}$ has non-empty interior.

The following Lemma shows that a closed convex hull of NOC set in $aff(\mathbf{R})$ has empty interior. This implies that a closed convex hull of a NOC set in $aff(\mathbf{R})$ is contained in a straight line.

LEMMA 3. Let Ω be a NOC set of $aff(\mathbf{R})$. Then $\widehat{\Omega}$ has empty interior.

Proof. Suppose that $\widehat{\Omega}$ has non-empty interior. By above note, we may assume that $\Omega = \{X_0, X_1, X_2\}$. Let $W = \mathbf{R}^+ X_0 + \mathbf{R}^+ X_1 + \mathbf{R}^+ X_2$. Then $W \neq aff(\mathbf{R})$. If not, then $\mathbf{R}^+ \widehat{\Omega} = aff(\mathbf{R})$ and hence $Aff(\mathbf{R}) = \mathbf{A}(e, \widehat{\Omega}) = \mathbf{A}(e, \widehat{\Omega})$ because $\mathbf{A}(e, \widehat{\Omega})$ and $\mathbf{A}(e, \widehat{\Omega})$ have the same interior. Therefore we may assume that $W = \mathbf{R}^+ X_1 + \mathbf{R}^+ X_2$ and $X_0 \in intW$.

Since $\{X_1, X_2\}$ is a basis for $aff(\mathbf{R})$, $X_0 = sX_1 + tX_2$ for some $s, t \in \mathbf{R}^+$. If s+t=1, then $\widehat{\Omega}$ has empty interior. Suppose s+t<1. Since $\widehat{\Omega}$ has interior, we find small s+t< u<1 such that $X_0 \in u(int\widehat{\Omega})$. Then $\exp X_0 \in int\mathbf{A}_{pc}(e,u,\Omega) \subset \mathbf{A}(e,u,\Omega)$ by Proposition 1. This is a contradiction from $\exp X_0 \in A(e,1,\Omega)$. Suppose s+t>1. Since $A(e,1,\Omega)$ is dense in $A(e,1,\widehat{\Omega})$, we can choose Y in $int\widehat{\Omega} \cap W'$ such that $\exp Y \in A(e,1,\Omega)$, where $W' = \mathbf{R}^+X_0 + \mathbf{R}^+X_1$. Then Y lies below of the line segment joining X_0 and X_1 . Since $\{X_0,X_1\}$ is a basis for $aff(\mathbf{R})$, $Y = t'X_0 + s'X_1$ for some $s',t' \in \mathbf{R}^+$ and s'+t' < 1. Similiary we have a contradition.

For a non-empty subset Ω of L(G), if Ω is interpreted as the set of controls, then it is an important problem to know whether $\mathbf{A}(\epsilon, \widehat{\Omega}) = \mathbf{A}_{pc}(\epsilon, \Omega)$? In the language of control theory, we are asking if piecewise constant bang-bang controls suffice to reach all points in the attainable set. A semigroup formulation is whether each member of $S(\widehat{\Omega})$ can be written as a finite product of elements from $\exp(\mathbf{R}^+\Omega)$. In [4], it is known that if a compact subset Ω of L(G) has the bounded factorization property (that is, there exists T>0 and an m>1 such that any product $\exp(t_1X_1)\cdots \exp(t_{m+1}X_{m+1})$ with $\sum_{i=1}^{m+1}t_i \leq T$ and $X_1, \cdots, X_{m+1} \in \Omega$ can be written as a product $\exp(s_1Y_1)\cdots \exp(s_mY_m)$, where $\sum_{i=1}^m s_i = \sum_{i=1}^{m+1}t_i$ and $Y_1, \cdots, Y_m \in \Omega$.), then for each t>0, $A_{pc}(\epsilon, t, \Omega) = A(\epsilon, t, \widehat{\Omega})$ and $A_{pc}(\epsilon, \Omega) = \mathbf{A}(\epsilon, \widehat{\Omega})$.

Let W be an arbitrary wedge in $aff(\mathbf{R})$ with its bounding rays $\{tX: t \in \mathbf{R}^+\}$, $\{tY: t \in \mathbf{R}^+\}$. In [2], I.Chon showed that if $W \cap \mathbf{I} = \{0\}$, where $\mathbf{I} = \{(0,y): y \in \mathbf{R}\}$ (it is the commutator of $aff(\mathbf{R})$), then $\exp W = \exp(\mathbf{R}^+X)\exp(\mathbf{R}^+Y) = \exp(\mathbf{R}^+Y)\exp(\mathbf{R}^+X)$. Using this result, we have a useful lemma for our approach.

LEMMA 4. If $\Omega = \{X,Y\}$ is a NOC set in $aff(\mathbf{R})$ and $\widehat{\Omega} \cap I = \phi$, then Ω has the bounded factorization property and hence for each t > 0, $A_{pc}(\epsilon, t, \Omega) = A(\epsilon, t, \widehat{\Omega})$ and $A_{pc}(\epsilon, \Omega) = A(\epsilon, \widehat{\Omega})$. Hence $\widehat{\Omega}$ is a NOC set.

Proof. Since Ω is a NOC set, for any triple product $\exp tX \exp sY \exp uX$, it is equal to $\exp tX \exp u'X \exp s'Y = \exp(t+u')X \exp s'Y$, for some $s', u' \in \mathbb{R}^+$ such that s+u=s'+u'. Thus t+s+u=(t+u')+s'

and hence Ω has the bounded factorization property. This implies that $A(e,t,\widehat{\Omega}) = A(e,t,\Omega)$ for any t > 0, and hence $\widehat{\Omega}$ is a NOC set.

LEMMA 5. Let $X = (0, a) \in I, Y = (x, y)$ with $x \neq 0$. Then $\exp Y \exp X = \exp(e^x X) \exp Y$.

Proof. Straightforward.

LEMMA 6. Let $X = (x_1, x_2), Y = (y_1, y_2) \in \Omega$. If $x_1 \le 0$ and $y_1 > 0$ or $x_1 > 0$, $y_1 \le 0$, then Ω is not NOC set.

Proof. If $x_1 = 0$, then $X \in \Omega \cap I$. By Lemma 5, $\exp Y \exp X = \exp(e^{y_1}X)\exp Y \in A(e,2,\Omega) \cap A(e,e^{y_1}+1,\Omega)$. Since $y_1 > 0,\Omega$ is not NOC set. Suppose $x_1 < 0$. Then the closed convex hull of $\{X,Y\}$ meets with I at Z = (0,a). If a = 0, then X and Y lie in the one-dimensional subspace of $aff(\mathbf{R})$ and hence Ω is not NOC set from Lemma 1. Suppose Ω is a NOC set. From Lemma 5, $\exp Y \exp Z = \exp(e^{y_1}Z)\exp Y$ and hance $\exp Z, \exp(e^{y_1}Z) \in A(e,t,\Omega)$ for some t > 0. However, $\exp(e^{y_1})Z = \exp Z \exp((0,e^{y_1}a-a))$ and $\exp((0,e^{y_1}a-a)) \in A(e,s,\Omega)$ for some s > 0. Therefore $A(e,t,\Omega) \cap A(e,t+s,\Omega) \neq \phi$. Since $y_1 > 0$, this is a contradiction.

THEOREM 1. Let Ω be a NOC set in $aff(\mathbf{R})$. Then $\Omega \subset X + \mathbf{I}$ for some non-zero vector X.

Proof. If Ω does not generate $aff(\mathbf{R})$, then $\Omega = \{X\}$ for some non-zero vector X. Suppose that Ω generates $aff(\mathbf{R})$. Since $\widehat{\Omega}$ has empty interior, it is a subset of a straight line. If $\widehat{\Omega} \cap \mathbf{I} \neq \emptyset$, then we can choose $X_1 = (x_1, y_1), X_2 = (x_2, y_2) \in \Omega$ such that $x_1 \leq 0, x_2 > 0$. By Lemma 6, $\{X_1, X_2\}$ is not NOC set. This is a contradiction. Therefore, $\widehat{\Omega} \cap \mathbf{I} = \emptyset$. Since Ω generates $aff(\mathbf{R})$, we have a distinct two vectors $X_1, X_2 \in \Omega$. Then the closed convex hull of $\{X_1, X_2\}$ does not meet with \mathbf{I} . By Lemma 4, it is a NOC set and hence from the following Theorem, it is contained in $X + \mathbf{I}$ for some non-zero vector X. Therefore $\Omega \subset \widehat{\Omega} \subset X + \mathbf{I}$ because $\widehat{\Omega}$ is a subset of a straight line.

THEOREM 2. Let G be a connected solvable Lie group. Then a compact, convex generating NOC set must be contained in $X + \mathbf{E}$, where \mathbf{E} is a subspace of codimension one containing the commutator.

Proof. See [1].

In [1], we showed that for a bounded subset Ω of a Lie algebra L(G) of Lie group G,Ω is a NOC set and h_{Ω} extends continuously to G if and only if there exists a continuous Lie group homomorphism from G into \mathbf{R} such that its differential map has a non-zero constant value on Ω . From Lemma 1, for any NOC set Ω in $aff(\mathbf{R})$, it is contained in $X+\mathbf{I}$ for some non-zero vector $X\in aff(\mathbf{R})$. Since \mathbf{I} is an ideal of $aff(\mathbf{R})$, we have a continuous Lie algebra homomorphism f from $aff(\mathbf{R})$ to $\mathbf{R}, tX+Y\to t$. Since $Aff(\mathbf{R})$ is a simple connected Lie group, we have a continuous Lie group homomorphism from G to \mathbf{R} such that its differential is f. Clearly $f(\Omega)=1$ and hence we conclude that h_{Ω} extends continuously to the whole group if Ω is bounded. More generally, the following conclusion holds:

THEOREM 2. Let Ω be a NOC set. Then h_{Ω} is continuous and it extends continuously to $Aff(\mathbf{R})$.

Proof. The map f from $aff(\mathbf{R})$ to \mathbf{R} , $tX+Y\to t$ is a continuous homomorphism. Hence there exists a continuous Lie group homomorphism $h:Aff(\mathbf{R})\to\mathbf{R}$ such that $h\circ\exp=f$, where exp is the exponenal map of Lie group $Aff(\mathbf{R})$. Let $x\in A_{pc}(e,t,\Omega)$. Then $x=\exp t_1X_1\cdots\exp t_nX_n$, where $\sum_{i=1}^n t_i=t$ and $X_i\in\Omega$ for $i=1,2,\cdots,n$. Since $h(\exp t_iX_i)=t_i, h(x)=t$. Thus $A_{pc}(e,t,\Omega)\subset h^{-1}(t)$. By Proposition 1, $A_{pc}(e,t,\Omega)$ is dense in $A(e,t,\Omega)$ and $h^{-1}(t)$ is closed, we have that $h(A(e,t,\Omega))=t$, for each $t\in\mathbf{R}^+$. This implies that $h_\Omega=h|_{S(\Omega)}$ extends continuously to $Aff(\mathbf{R})$.

References

- 1. Chae, Y. and Lim, Y., Non-overlapping control systems on Lie groups, Semi-group Forum, to appear.
- Chon, I., Weakly commutative Lie semigroups, Semigroup Forum 41 (1990), 339-355.
- Hilgert, J., Hoffman, K. H. and Lawson, J. D., Lie groups, convex cones, and semigroups, Oxford University Press, Oxford, 1989.
- Lawson, J. D., Embedding semigroups into Lie groups, The Analytical and Topological Theory of Semigroups, Trands and Developments, de Grunter, Berlin-New Yor, 1990.
- Lawson, J. D. and Chon, I., Attainable sets and one-parameter semigroups of sets, Glasgow Math. J. 33 (1991), 187-201.

Younki Chae and Yongdo Lim

- 6. _____, Problems on semigroups and control, Semigroup Forum 41 (1990), 245-252.
- 7. Ruppert, W. A. F., On open subsemigroups of connected groups, Semigroup Forum 39 (1989), 347-362.
- 8. Sussmann, H. and Jurjevic, V., Control systems on Lie groups, J. Differential Equations 12 (1972), 313-329.

YOUNKI CHAE, YONGDO LIM
DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU
702-701, KOERA