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CURVATURE HOMOGENEITY AND BALL-HOMOGENEITY
ON ALMOST COKAHLER 3-MANIFOLDS

YANING WANG

ABSTRACT. Let M be a curvature homogeneous or ball-homogeneous
non-coKé&hler almost coKéhler 3-manifold. In this paper, we prove that
M is locally isometric to a unimodular Lie group if and only if the Reeb
vector field £ is an eigenvector field of the Ricci operator. To extend
this result, we prove that M is homogeneous if and only if it satisfies

Veh =2f¢h, f €R.

1. Introduction

In 1958, Boothby and Wang [3] introduced the notion of homogeneous con-
tact manifolds. A contact manifold (M,w) is said to be homogeneous if there
exits a connected Lie group G acting transitively as a group of diffeomorphisms
on M and leaving the contact form w invariant. Later, such notion was ex-
tended on contact metric manifolds (see [4,6]) and almost coKahler manifolds
(see [15]), even on almost contact metric manifolds (see [5]). An almost contact
metric manifold (M, n) is said to be locally homogeneous if the pseudogroup of
local isometries acts transitively on M and leaves the almost contact form 7 in-
variant. This notion comes from the fact that a Riemannian manifold equipped
with a transitive pseudogroup of isometries is said to be locally homogeneous.

A locally homogeneous Riemannian manifold has the property that the vol-
ume of any sufficiently small geodesic sphere or ball depends only on its radius
but has nothing to do with its center. A Riemannian manifold satisfying such
property is said to be ball-homogeneous (see [7,10]). A Riemannian manifold
is said to be curvature homogeneous if all eigenvalues of the Ricci operator are
constants. In history, many authors have studied the problem whether a ball-
homogeneous Riemannian manifold of dimension > 2 is necessarily a locally
homogenous one or not. In general, this problem is very difficult to investi-
gate. However, when a Riemannian manifold is equipped with some special

Received March 13, 2018; Revised May 30, 2018; Accepted June 21, 2018.

2010 Mathematics Subject Classification. Primary 53D15; Secondary 53C30, 53C25.

Key words and phrases. almost coKahler 3-manifold, ball-homogeneity, curvature homo-
geneity, Locally homogeneity, Lie group.

(©2019 Korean Mathematical Society



254 Y. WANG

geometric structures or conditions, such as contact metric and Sasakian struc-
tures or conditions related with Ricci tensor, this problem was solved partially
in [4,7,9]. After the notion of curvature homogeneous Riemannian manifolds
introduced by Singer [17], a natural question was proposed: is there a curva-
ture homogeneous space which is not locally homogeneous? Such problem was
studied in [4] on contact metric 3-manifolds and in [21] on general Riemannian
3-manifolds.

In this paper, we aim to explore the relationships among curvature ho-
mogeneity, ball-homogeneity, local homogeneity and homogeneity on an al-
most coKé&hler 3-manifold. We prove that a curvature homogeneous or ball-
homogeneous non-coKéhler almost coKéhler 3-manifold with £ an eigenvector
field of the Ricci operator is locally isometric to a unimodular Lie group. We
prove that a curvature homogeneous or ball-homogeneous non-coKéhler almost
coKahler 3-manifold is homogeneous if and only if there holds V¢h = 2f¢h
for f € R. We remark that some local classifications of almost coKéahler 3-
manifolds satisfying Q¢ = S(&,&)¢ or Veh = 2f¢h can be seen in [18-20].

2. Almost coKahler manifolds

An almost contact metric structure defined on a smooth differentiable man-
ifold M2+ of dimension 2n + 1 means a (¢, &,n, g)-structure satisfying

(2.2) Pg=9g-—n®mn,

where ¢ is a (1, 1)-type tensor field, £ is a vector field called the Reeb vector
field and n is a 1-form called the almost contact 1-form and g is a Riemannian
metric called compatible metric with respect to the almost contact structure.

On an almost contact metric manifold (M?"*1 ¢, & n, g), the fundamental
2-form @ is defined by ®(X,Y) = g(X,¢Y) for any vector fields X,Y. If
an almost contact metric manifold M?"*! satisfies dyp = 0 and d® = 0, it is
called an almost coKdhler manifold. We consider the product M?"*t! x R of
an almost contact metric manifold M?"+! and R and define on it an almost
complex structure J by

d d
J(X, f~)=(ox- X)—
(275 ) = (ex - s ).
where X denotes a vector field tangent to M?"*!, ¢ is the coordinate of R and
f is a C*°-function on M?"*+! x R. We denote by [¢, ¢] the Nijenhuis tensor of

. If
[¢,0] = —2dn® ¢
holds, or equivalently, J is integrable, then the almost contact metric structure

is said to be normal. A normal almost coKéahler manifold is called a coKdhler
manifold.
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An (almost) coKédhler manifold is nothing but an (almost) cosymplectic
manifold defined by Blair in [1] and studied in [2,8,13-16]. As pointed out
in [11], a coKéhler manifold is a really odd dimensional analog of a Kéhler
manifold since a coKahler manifold is a Kahler mapping torus.

The (1,1)-type tensor field h := %ﬁggb is important for the geometry of an
almost contact metric manifold, where £ is the Lie differentiation. The Jacobi
operator generated by ¢ is denoted by [ := R(-,£)£, where R is the curvature
tensor. From [13,14], we have the following equations:

(2.3) hé = 1€ =0,trh = tr(h') = 0,

(2.4) VE =1,

where h' := h o ¢. Generally, an almost coKahler manifold is coKahler if and
only if

(2.5) Vo =0 (< Vo =0).

In particular, an almost coK&hler 3-manifold is coKé&hler if and only if h van-
ishes (see [13]). On a coKéhler 3-manifold, from (2.4) we have Q¢ = 0, where
@ denotes the Ricci operator associated with the Ricci tensor S.

All manifolds in this paper are assumed to be smooth and connected.

3. Homogeneity on almost coKahler 3-manifolds

By the definition of curvature homogeneity, we see that a curvature homoge-
neous Riemannian manifold has constant scalar curvature. Moreover, following
[7] we know that the ball-homogeneity implies the constancy of an infinite num-
ber of scalar curvature invariants. In particular, on a ball-homogeneous space
the scalar curvature r and the squared norm of the Ricci operator ||Q|? are
both constants. It was shown in [18] that a coKéhler 3-manifold with constant
scalar curvature is locally isometric to the product R x N2(c), where N?(c)
denotes a Kéhler surface of constant curvature c. Therefore, next we study
only curvature and ball-homogeneity on strictly almost coKéhler 3-manifolds.

From now on, let M be a non-coKéahler almost coKéahler 3-manifold. Since
h # 0, there exists a local orthonormal ¢-basis {¢, e, de} of three smooth unit
eigenvectors of h for any point of M. More precisely, we set he = Ae and hence
hope = —Agpe, where X is assumed to be a positive and continuous function.

Lemma 3.1 ([16, Lemma 2.1]). The Levi-Civita connection of M is given by
Vel =0, Vee = foe, Vede = —fe, Vel = —Ade, Vel = —Ae,

Vee = % (qbe()\) + J(e))qbe, Vsepe = % (e()\) + J(gbe))e,

1 1
Voee = A = 55 (eN) + a(0e) ) ge, Vege = A = 55 (de() +0(e) e,
where [ is a smooth function and o is the 1-form defined by o(-) = S(-,&).
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Applying Lemma 3.1, the Ricci operator ) can be written as the following;:
Q& = —2X*¢ + a(e)e + o(de)pe,
1
(3.1) Qe = o)+ 5 (7 + 202 = ANf e + EN)ge,

1
Qpe = o(ge)¢ +ENe + 5 (r+237 + 40f) ge,
with respect to the local basis {£, e, pe}, where r denotes the scalar curvature.

Theorem 3.1. A non-coKdhler almost coKdhler 3-manifold with £ an eigen-
vector field of the Ricci operator is curvature homogeneous or ball-homogeneous
if and only if it is locally isometric to one of the following unimodular Lie group:
e the group E(1,1) of rigid motions of the Minkowski 2-space;
e the universal covering E(2) of the group of rigid motions of the Fu-
clidean 2-space;
o the Heisenberg group H>.

Proof. As shown at the beginning of this section, a curvature homogeneous or
ball-homogeneous Riemannian manifold has the following property:

(3.2) rand ||Q||? are constants.

Let M be a non-cokahler almost coKéhler 3-manifold such that Q¢ =
S(&,€)€. From (3.1), the Ricci operator is given by

Q¢ = —2)*¢,
(3.3) Qe = %(r+2)\2 —4/\f)e—|—§(/\)¢e,
Qde = E(N)e + %(r Yo% 4 4>\f) de.

Applying Lemma 3.1, in view of r = constant, from (3.3) we get
(VeQ)E = —4XE(N)E,

(.Q)e = A6E + (e(6N) — 2f0e)oe + (e (2 = 22) - Letn) ) e

(TaQ)de = ASNE + (6el6(N) + 2fe()e (00 (12 4 221) - Ee(n) ) .

In view of A > 0, putting the previous three equations into the well known
formula divQ = %gradr, we obtain

(3.4) §(A) =0, e(A) —e(f) =0, ge(A) + ¢e(f) = 0.

On the other hand, from (3.3) we have [|Q||? = 172 +2A\%r 4+ 6A* +8\? f2. Since
7 is a constant and £(\) = 0, the action of £ on ||Q||? gives

(3.5) fe(f) = 0.
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Case 1: f = 0. In this case, from (3.4) we see that A is a positive constant.
From Lemma 3.1, we have

(3.6) [€,e] = Ade, [e, pe] =0, [pe,&] = —Ne.

Following Milnor [12] we state that M is locally isometric to the unimodular Lie
group E(1,1) of rigid motions of the Minkowski 2-space. We refer the reader
to [5,15,16] for constructions of left invariant almost coKéhler structures on
three-dimensional metric Lie groups.

Case 2: f # 0 holds on some open subset. In this case, from (3.5) we have
&(f) = 0. In view of r = constant and the second term of (3.4), the action of
e on ||Q]? gives

(3.7) 2Xe(A) (1 + 6X% +4f2 +4\f) = 0.

We now suppose that e(A) # 0 holds on some open subset. Then, it follows
directly that r 4+ 6\ + 4f2 4+ 4\f = 0. In view of r = constant, the action
of e on this relation implies 3Ae(A) + 2fe(f) + Ae(f) + fe(A) = 0. Putting
the second term of (3.4) into this relation gives 4\ + 3f = 0. It follows that
4pe(N) 4+ 3¢e(f) = 0. Consequently, taking into account the third term of (3.4)
we have ¢e(A) = 0. From Lemma 3.1, the Lie bracket is given as the following:

[576] = (f + /\)qbe,
(3.8) [pe, &] = (f — Ne;

;6] =~ de(Ne + 51N

The second term of (3.8) implies ge(€(N)) — E(pe(N)) = (f — Ae(A). Taking
into account ¢e(A) = 0, the first term of (3.4), 4\+3f = 0 and the assumption
A > 0, we obtain e(A) = 0, a contradiction. Therefore, it follows from (3.7)
that e(\) = 0.

Similarly, according to the first term of (3.8) we obtain £(e(\)) —e(&(N)) =
(f + M) ge(N). In this context, using e(A) = 0 and {(A\) = 0 we have

(3.9) (f + Nge(N) = 0.

Assume that ¢e()) # 0 holds on some open subset. Then it follows that
f = —A. Making use of this, we obtain [|Q[?> = 3r? 4+ 2A%r + 14X\*. As the
scalar curvature r and [|@||?> both are constants, it follows that X is also a
constant. This contradicts the assumption ¢e(\) # 0. Thus, we obtain from
(3.9) that ¢e(N) = 0 and hence A is a constant. Now, (3.8) becomes

(3.10) [§,e]l = (f + N)de, [e,;de] =0, [¢e, ] = (f = M.

Following Milnor [12] (see also D. Perrone [15,16]), we state that M is locally
isometric to a unimodular Lie group G. More precisely, G is the group F(1,1)
of rigid motions of the Minkowski 2-space if —\ < f < A. G is the universal
covering E(2) of the group of rigid motions of the Euclidean 2-space if either
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f>Xor f < =\ G is the Heisenberg group H? if either f = A or f = —\.
This completes the proof. ([

We remark that Theorem 3.1 is still true even when the curvature homo-
geneity or ball-homogeneity are replaced by the weaker condition (3.2).

Theorem 3.2. Let M be a non-coKahler almost coKdhler 3-manifold. Then,
the following statements are equivalently.

e M is homogeneous.

o M is curvature homogeneous or ball-homogeneous and satisfies Veh =
2foh, f e R.

o M is locally isometric to one of the three unimodular Lie groups E(1,1),
E(2), H? or a non-unimodular Lie group G1 whose Lie algebra is given
by [&,e] = voe, [e,pe] = age, [pe,&] = 0, where both o and 7 are
nonzero constants.

Proof. It was proved in [15] that a homogeneous non-coKéhler almost coKéhler
manifold is locally isometric to E(1,1), E(2), H? or G;. On the other hand, the
homogeneity implies curvature homogeneity and curvature homogeneity. Also,
one can check that V¢h = 2f¢h, f € R, holds for almost coKahler structures
on the above four Lie groups. Therefore, next we need only to prove that the
second statement implies the third one.

As M is assumed to be curvature homogeneous or ball-homogeneous, then
(3.2) is true. For a general non-coKéahler almost coK&hler 3-manifold, following
Lemma 3.1 we have

Veh = %g(A)h +2féh.

In view of our assumption Ve¢h = 2f¢h, we obtain {(A) =0, A >0 and fisa
constant. Moreover, it follows from (3.1) that

(3.11) Q1> = 4X* + 2(0(e))? + 2(o(e))? + %(r +2X%)2 + 82 f2.
According to Lemma 3.1, the Lie bracket on M is given as the following:
(£, €] = (f + A)e,
(3.12) [ge. &l = (f — Ne,
;6] = 55 (66(3) + 0(e))e + 55 (e(N) + o (e))de.

In view of r = constant, from Lemma 3.1 and (3.1) we obtain

(VeQ)§ = —4XN)E +{&(a(e)) — fol(de)te + {fa(e) +&(o(de))} e,

(Ve@)e = {e(o(e)) — 550(0e)(6e) + o(e)) }¢
+e(A* =2\ f)e — {Ao(e) + 2fpe(\) + 2fa(e) }de,



BALL-HOMOGENEITY ON ALMOST COKAHLER 3-MANIFOLDS 259

(VaeQ)be = {9e(o(0e)) — 5-a(e)(e(A) + olve))}é
— {Xo(ge) — 2fe(N) — 2fo(de)te + pe(A* + 2Xf)de.

Putting the previous three equations into the well known formula divQ) =
%gradr and using f = constant, we obtain

e(0(6)) + 9el((9e) — 5 (7(9e)oeN) + 20(e)alge) + o(e)e(N) =0,
(3.13) §(0(0)) + (f — Na(e) + 2Xe(N) = 0,
&(o(6e)) — (f + No(e) + 2pe(A) = 0

Since the scalar curvature 7, f and ||Q||? are all constants, in view of £()\) =
0, the action of £ on ||Q||? gives

(3.14) o(e)é(o(e)) + a(ge)(a(ge)) = 0.

Adding the second term of (3.13) multiplied by o(e) to the third term of (3.13)
multiplied by o(¢e) gives an equation. Comparing the resulting equation with
(3.14) we obtain

(3.15) e(No(e) — ale)a(ge) + de(Nal(ge) = 0,
where we have used A > 0. Using £(\) = 0, the first two terms of (3.12) gives
(3.16) §(e(N) = (f + Moe(X), £(de(A) = (A = fe(H).

Taking into account (3.16) and the last two terms of (3.13), the action of £ on
(3.15) gives

2(f +20)a(e)ge(A) +2(2X — flo(de)e(A) — 2A(e(N))
+(f = N(o(de)® = (f + M)(0(e)* — 2M(¢e(N))* = 0.

Similarly, in view of (3.16) and the last two terms of (3.13), the action of £ on
(3.17) gives

(3A2 = Af — f2)o(de)oe(N) + (332 + Af — F)ole)e(N)

— 6 %e(N)ge(\) + (f2 — A?)o(e)a(ge) = 0.

In view of A > 0, adding (3.15) multiplied by f2 — A2 to (3.18) implies
(3.19) 22X+ flo(e)e(A) + (2X — f)o(de)pe(N) — 6Ae(A)pe(A) = 0.

In view of (3.16) and the last two terms of (3.13), the action of £ on (3.19)
gives

(3.17)

(3.18)

2(A = fa(ge)e(A) +2(A + flo(e)pe(M)
= (BA=2f)(e(N)? = (BA + 2f)(¢e(N))* = 0.

In view of (3.16) and the last two terms of (3.13), the action of & on (3.20)
gives

(3:21) (\* = fHa(e)e(N) + (X = f2)o(ge)de(N) + (2f = TA%)e(N)ge(N) = 0.

For simplicity, we continuous our discussions by the following several cases:

(3.20)
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Case 1: f = 0. In this case, taking into account A > 0 and adding (3.21)
to (3.15) multiplied by —\? we obtain e(\)¢e(\) = 0. We now assume that
e(A) # 0 holds on some open subset and hence we obtain ¢e(A) = 0. However,
in view of A > 0 and f = constant, from the second term of (3.16) we have
e(A) = 0, a contradiction. Similarly, if we assume ¢e(\) # 0 holds on some
open subset, then from the first term of (3.16) we arrive at a contradiction.
Consequently, it follows that e(A) = ¢e(A\) = 0 and hence by £(A) = 0 we see
that A is a constant. Therefore, from (3.17) we have o(e) = o(¢e) = 0. In this
context, (3.12) becomes

[67 6] = >\¢67 [67 (;56] = 07 [¢€,€] = 7A65
where \ is a positive constant. We state that M is locally isometric to a
unimodular Lie group E(1,1) of rigid motions of the Minkowski 2-space.

Case 2: f # 0. Subtracting (3.19) multiplied by A\? — f2 from (3.21) multi-
plied by 2\ — f we have

(3.22) (2f (N = f2)a(e) + (BN = TAZf + 2Mf2 + 2f)pe(N))e(N) = 0.
Next, we consider two subcases corresponding to (3.22).

Case 2.1: e(\) # 0 holds on some open subset. In this case, from (3.22) we
have
(3.23) 2f(N2 — fA)a(e) + (8X3 — TAZf + 20 f2 4+ 2f3)pe(N) = 0.
In view of the second terms of (3.16) and (3.13), the action of £ on (3.23) gives
(3.24) 2f (N2 — AN = fo(pe) + (A= I8N —11IAZf — 20 f2 +2f3)e()) = 0.
Using the third term of (3.16) and the first term of (3.13), the action of £ on
(3.24) gives
(3.25)  2f(N% — fAH)2%0(e) + (A2 — A (8N — 152 f 4+ 202 + 213 pe(N) = 0.
Subtracting (3.25) from (3.23) multiplied by A? — f? gives
(3.26) N FA2 = fA)pe(N) = 0.

Case 2.1.1: X\ — f? # 0 holds on some open subset. In view of f # 0 and
A > 0, from (3.26) we have ¢e(A\) = 0. Using this in (3.25) we have o(e) = 0.
Now, (3.20) becomes 2(A — f)o(de) — (5A — 2f)e(A) = 0. On the other hand,
the second term of (3.13) becomes (f — \)o(¢e) + 2 e(A) = 0. Comparing this
with previous relation gives A = 2f and hence o(¢e) = 4e(\), where we have
used still f # 0 and the assumption e(A) # 0. In this context, (3.17) becomes
A(e(N))? = 0. This contradicts the assumption e(\) # 0.

Case 2.1.2: ¢e()\) # 0. In view of f # 0, from (3.26) we have \? — f2 = 0.
This implies that X\ is a positive constant and then we have ¢e(\) = 0, a
contradiction.
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According to the above two subcases we conclude that (3.26) contradicts
the assumption e(A) # 0. In other words, it follows from (3.22) that e(\) = 0.
Next we focus on the study of this subcase.

Case 2.2: e(\) = 0. Putting this into (3.21) gives
(3.27) (A = f)o(ge)de(N) = 0.

Similarly, next we discuss two subcases corresponding to (3.27).

Case 2.2.1: o(¢e) # 0 holds on some open subset. In this case, it follows
from (3.27) that (A2 — f2)gpe()\) = 0. If ¢e(N) # 0 holds on some open subset,
it follows that A is a constant, a contradiction. Thus, we have ¢e(A) = 0 and
in view of £(A\) = 0 we observe that ) is a positive constant. Applying this in
(3.15) we have o(e)o(¢e) = 0 and hence o(e) = 0. Applying this in (3.17) we
obtain A = f. Finally, from (3.11) we say that o(¢e) is a nonzero constant. In
this context, (3.12) becomes

1
(3.28) [&,e] =2f e, [e, pe] = ﬁa(d)e)qbe, [pe, &] =0,
where f is a positive constant. One can check that a Lie group whose Lie
algebra is given by (3.28) is non-unimodular because of

tr(ade) = 0, tr(ad,) = ifa(gz)e) £0, tr(adg.) = 0.

Here we remark that such Lie group corresponds to the (NCs) case shown in
[15, Theorem 4.1].

Case 2.2.2: o(¢e) = 0. Putting e(A\) = 0 into the first term of (3.16) we
obtain (f 4+ A)¢e(A) = 0. In this relation, ¢e(\) # 0 reduces to A = constant, a
contradiction. Then, it follows directly that ¢e(A) = 0 and hence A is a positive
constant because of {(A\) = 0. Applying this (3.17) we have

(3.29) (f +N)(o(e))*=0.

According to (3.11), we see that o(e) is a constant. Next, we need to consider
the last two subcases as follows.

Case 2.2.2.1: o(e) # 0. In this case, it follows from (3.29) that A = —f, a
positive constant. Therefore, (3.12) becomes

1
(330) [576] =0, [67 ¢6] = ga(e)(i, [(Z)eyf] = 2f€7
where f is a negative constant. By (3.30) and a simple calculation we obtain
ﬁa(e)

According to the above relation, we state that M is locally isometric to a
non-unimodular Lie group. We remark that such Lie group corresponds still
to the (NC3) case shown in [15, Theorem 4.1].

tr(ade) = 0, tr(ade) = 0, tr(adge) = —
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Case 2.2.2.2: o(e) = 0. In this case, (3.12) becomes
(3.31) [§,e]l = (f + N)de, [e,;de] =0, [¢e, ] = (f = Me.

As discussed in proof of Theorem 3.1, now M is locally isometric to the uni-
modular Lie group G. Moreover, G is the group E(1,1) of rigid motions of
the Minkowski 2-space if —A < f < A. G is the universal covering E (2) of the
group of rigid motions of the Euclidean 2-space if either f > Aor f < —A. G
is the Heisenberg group H? if either f = A or f = —\. This completes the
proof. ([

The Reeb vector field of the almost coKahler structure defined on Lie group
(G1 is not an eigenvector field of the Ricci operator.

Corollary 3.1. A non-coKdihler almost coKdhler 3-manifold satisfying (3.2)
and Veh = 2foh, f € R, is locally homogeneous.
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