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CURVATURE HOMOGENEITY AND BALL-HOMOGENEITY

ON ALMOST COKÄHLER 3-MANIFOLDS

Yaning Wang

Abstract. Let M be a curvature homogeneous or ball-homogeneous

non-coKähler almost coKähler 3-manifold. In this paper, we prove that
M is locally isometric to a unimodular Lie group if and only if the Reeb

vector field ξ is an eigenvector field of the Ricci operator. To extend
this result, we prove that M is homogeneous if and only if it satisfies

∇ξh = 2fφh, f ∈ R.

1. Introduction

In 1958, Boothby and Wang [3] introduced the notion of homogeneous con-
tact manifolds. A contact manifold (M,ω) is said to be homogeneous if there
exits a connected Lie group G acting transitively as a group of diffeomorphisms
on M and leaving the contact form ω invariant. Later, such notion was ex-
tended on contact metric manifolds (see [4, 6]) and almost coKähler manifolds
(see [15]), even on almost contact metric manifolds (see [5]). An almost contact
metric manifold (M,η) is said to be locally homogeneous if the pseudogroup of
local isometries acts transitively on M and leaves the almost contact form η in-
variant. This notion comes from the fact that a Riemannian manifold equipped
with a transitive pseudogroup of isometries is said to be locally homogeneous.

A locally homogeneous Riemannian manifold has the property that the vol-
ume of any sufficiently small geodesic sphere or ball depends only on its radius
but has nothing to do with its center. A Riemannian manifold satisfying such
property is said to be ball-homogeneous (see [7, 10]). A Riemannian manifold
is said to be curvature homogeneous if all eigenvalues of the Ricci operator are
constants. In history, many authors have studied the problem whether a ball-
homogeneous Riemannian manifold of dimension > 2 is necessarily a locally
homogenous one or not. In general, this problem is very difficult to investi-
gate. However, when a Riemannian manifold is equipped with some special
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geometric structures or conditions, such as contact metric and Sasakian struc-
tures or conditions related with Ricci tensor, this problem was solved partially
in [4, 7, 9]. After the notion of curvature homogeneous Riemannian manifolds
introduced by Singer [17], a natural question was proposed: is there a curva-
ture homogeneous space which is not locally homogeneous? Such problem was
studied in [4] on contact metric 3-manifolds and in [21] on general Riemannian
3-manifolds.

In this paper, we aim to explore the relationships among curvature ho-
mogeneity, ball-homogeneity, local homogeneity and homogeneity on an al-
most coKähler 3-manifold. We prove that a curvature homogeneous or ball-
homogeneous non-coKähler almost coKähler 3-manifold with ξ an eigenvector
field of the Ricci operator is locally isometric to a unimodular Lie group. We
prove that a curvature homogeneous or ball-homogeneous non-coKähler almost
coKähler 3-manifold is homogeneous if and only if there holds ∇ξh = 2fφh
for f ∈ R. We remark that some local classifications of almost coKähler 3-
manifolds satisfying Qξ = S(ξ, ξ)ξ or ∇ξh = 2fφh can be seen in [18–20].

2. Almost coKähler manifolds

An almost contact metric structure defined on a smooth differentiable man-
ifold M2n+1 of dimension 2n+ 1 means a (φ, ξ, η, g)-structure satisfying

(2.1) φ2 = −id + η ⊗ ξ, η(ξ) = 1,

(2.2) φ∗g = g − η ⊗ η,

where φ is a (1, 1)-type tensor field, ξ is a vector field called the Reeb vector
field and η is a 1-form called the almost contact 1-form and g is a Riemannian
metric called compatible metric with respect to the almost contact structure.

On an almost contact metric manifold (M2n+1, φ, ξ, η, g), the fundamental
2-form Φ is defined by Φ(X,Y ) = g(X,φY ) for any vector fields X,Y . If
an almost contact metric manifold M2n+1 satisfies dη = 0 and dΦ = 0, it is
called an almost coKähler manifold. We consider the product M2n+1 × R of
an almost contact metric manifold M2n+1 and R and define on it an almost
complex structure J by

J

(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
,

where X denotes a vector field tangent to M2n+1, t is the coordinate of R and
f is a C∞-function on M2n+1 ×R. We denote by [φ, φ] the Nijenhuis tensor of
φ. If

[φ, φ] = −2dη ⊗ ξ
holds, or equivalently, J is integrable, then the almost contact metric structure
is said to be normal. A normal almost coKähler manifold is called a coKähler
manifold.
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An (almost) coKähler manifold is nothing but an (almost) cosymplectic
manifold defined by Blair in [1] and studied in [2, 8, 13–16]. As pointed out
in [11], a coKähler manifold is a really odd dimensional analog of a Kähler
manifold since a coKähler manifold is a Kähler mapping torus.

The (1, 1)-type tensor field h := 1
2Lξφ is important for the geometry of an

almost contact metric manifold, where L is the Lie differentiation. The Jacobi
operator generated by ξ is denoted by l := R(·, ξ)ξ, where R is the curvature
tensor. From [13,14], we have the following equations:

(2.3) hξ = lξ = 0, trh = tr(h′) = 0,

(2.4) ∇ξ = h′,

where h′ := h ◦ φ. Generally, an almost coKähler manifold is coKähler if and
only if

(2.5) ∇φ = 0 (⇔ ∇Φ = 0).

In particular, an almost coKähler 3-manifold is coKähler if and only if h van-
ishes (see [13]). On a coKähler 3-manifold, from (2.4) we have Qξ = 0, where
Q denotes the Ricci operator associated with the Ricci tensor S.

All manifolds in this paper are assumed to be smooth and connected.

3. Homogeneity on almost coKähler 3-manifolds

By the definition of curvature homogeneity, we see that a curvature homoge-
neous Riemannian manifold has constant scalar curvature. Moreover, following
[7] we know that the ball-homogeneity implies the constancy of an infinite num-
ber of scalar curvature invariants. In particular, on a ball-homogeneous space
the scalar curvature r and the squared norm of the Ricci operator ‖Q‖2 are
both constants. It was shown in [18] that a coKähler 3-manifold with constant
scalar curvature is locally isometric to the product R × N2(c), where N2(c)
denotes a Kähler surface of constant curvature c. Therefore, next we study
only curvature and ball-homogeneity on strictly almost coKähler 3-manifolds.

From now on, let M be a non-coKähler almost coKähler 3-manifold. Since
h 6= 0, there exists a local orthonormal φ-basis {ξ, e, φe} of three smooth unit
eigenvectors of h for any point of M . More precisely, we set he = λe and hence
hφe = −λφe, where λ is assumed to be a positive and continuous function.

Lemma 3.1 ([16, Lemma 2.1]). The Levi-Civita connection of M is given by

∇ξξ = 0, ∇ξe = fφe, ∇ξφe = −fe, ∇eξ = −λφe, ∇φeξ = −λe,

∇ee =
1

2λ

(
φe(λ) + σ(e)

)
φe, ∇φeφe =

1

2λ

(
e(λ) + σ(φe)

)
e,

∇φee = λξ − 1

2λ

(
e(λ) + σ(φe)

)
φe, ∇eφe = λξ − 1

2λ

(
φe(λ) + σ(e)

)
e,

where f is a smooth function and σ is the 1-form defined by σ(·) = S(·, ξ).



256 Y. WANG

Applying Lemma 3.1, the Ricci operator Q can be written as the following:

Qξ = −2λ2ξ + σ(e)e+ σ(φe)φe,

Qe = σ(e)ξ +
1

2

(
r + 2λ2 − 4λf

)
e+ ξ(λ)φe,

Qφe = σ(φe)ξ + ξ(λ)e+
1

2

(
r + 2λ2 + 4λf

)
φe,

(3.1)

with respect to the local basis {ξ, e, φe}, where r denotes the scalar curvature.

Theorem 3.1. A non-coKähler almost coKähler 3-manifold with ξ an eigen-
vector field of the Ricci operator is curvature homogeneous or ball-homogeneous
if and only if it is locally isometric to one of the following unimodular Lie group:

• the group E(1, 1) of rigid motions of the Minkowski 2-space;

• the universal covering Ẽ(2) of the group of rigid motions of the Eu-
clidean 2-space;
• the Heisenberg group H3.

Proof. As shown at the beginning of this section, a curvature homogeneous or
ball-homogeneous Riemannian manifold has the following property:

(3.2) r and ‖Q‖2 are constants.

Let M be a non-cokähler almost coKähler 3-manifold such that Qξ =
S(ξ, ξ)ξ. From (3.1), the Ricci operator is given by

Qξ = −2λ2ξ,

Qe =
1

2

(
r + 2λ2 − 4λf

)
e+ ξ(λ)φe,

Qφe = ξ(λ)e+
1

2

(
r + 2λ2 + 4λf

)
φe.

(3.3)

Applying Lemma 3.1, in view of r = constant, from (3.3) we get

(∇ξQ)ξ = −4λξ(λ)ξ,

(∇eQ)e = λξ(λ)ξ + (e(ξ(λ))− 2fφe(λ))φe+

(
e
(
λ2 − 2λf

)
− ξ(λ)

λ
φe(λ)

)
e,

(∇φeQ)φe = λξ(λ)ξ + (φe(ξ(λ)) + 2fe(λ))e+

(
φe

(
λ2 + 2λf

)
− ξ(λ)

λ
e(λ)

)
φe.

In view of λ > 0, putting the previous three equations into the well known
formula divQ = 1

2gradr, we obtain

(3.4) ξ(λ) = 0, e(λ)− e(f) = 0, φe(λ) + φe(f) = 0.

On the other hand, from (3.3) we have ‖Q‖2 = 1
2r

2 +2λ2r+6λ4 +8λ2f2. Since

r is a constant and ξ(λ) = 0, the action of ξ on ‖Q‖2 gives

(3.5) fξ(f) = 0.
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Case 1: f = 0. In this case, from (3.4) we see that λ is a positive constant.
From Lemma 3.1, we have

(3.6) [ξ, e] = λφe, [e, φe] = 0, [φe, ξ] = −λe.

Following Milnor [12] we state that M is locally isometric to the unimodular Lie
group E(1, 1) of rigid motions of the Minkowski 2-space. We refer the reader
to [5, 15, 16] for constructions of left invariant almost coKähler structures on
three-dimensional metric Lie groups.

Case 2: f 6= 0 holds on some open subset. In this case, from (3.5) we have
ξ(f) = 0. In view of r = constant and the second term of (3.4), the action of
e on ‖Q‖2 gives

(3.7) 2λe(λ)(r + 6λ2 + 4f2 + 4λf) = 0.

We now suppose that e(λ) 6= 0 holds on some open subset. Then, it follows
directly that r + 6λ2 + 4f2 + 4λf = 0. In view of r = constant, the action
of e on this relation implies 3λe(λ) + 2fe(f) + λe(f) + fe(λ) = 0. Putting
the second term of (3.4) into this relation gives 4λ + 3f = 0. It follows that
4φe(λ)+3φe(f) = 0. Consequently, taking into account the third term of (3.4)
we have φe(λ) = 0. From Lemma 3.1, the Lie bracket is given as the following:

[ξ, e] = (f + λ)φe,

[φe, ξ] = (f − λ)e;

[e, φe] = − 1

2λ
φe(λ)e+

1

2λ
e(λ)φe.

(3.8)

The second term of (3.8) implies φe(ξ(λ)) − ξ(φe(λ)) = (f − λ)e(λ). Taking
into account φe(λ) = 0, the first term of (3.4), 4λ+3f = 0 and the assumption
λ > 0, we obtain e(λ) = 0, a contradiction. Therefore, it follows from (3.7)
that e(λ) = 0.

Similarly, according to the first term of (3.8) we obtain ξ(e(λ))− e(ξ(λ)) =
(f + λ)φe(λ). In this context, using e(λ) = 0 and ξ(λ) = 0 we have

(3.9) (f + λ)φe(λ) = 0.

Assume that φe(λ) 6= 0 holds on some open subset. Then it follows that
f = −λ. Making use of this, we obtain ‖Q‖2 = 1

2r
2 + 2λ2r + 14λ4. As the

scalar curvature r and ‖Q‖2 both are constants, it follows that λ is also a
constant. This contradicts the assumption φe(λ) 6= 0. Thus, we obtain from
(3.9) that φe(λ) = 0 and hence λ is a constant. Now, (3.8) becomes

(3.10) [ξ, e] = (f + λ)φe, [e, φe] = 0, [φe, ξ] = (f − λ)e.

Following Milnor [12] (see also D. Perrone [15,16]), we state that M is locally
isometric to a unimodular Lie group G. More precisely, G is the group E(1, 1)
of rigid motions of the Minkowski 2-space if −λ < f < λ. G is the universal
covering Ẽ(2) of the group of rigid motions of the Euclidean 2-space if either
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f > λ or f < −λ. G is the Heisenberg group H3 if either f = λ or f = −λ.
This completes the proof. �

We remark that Theorem 3.1 is still true even when the curvature homo-
geneity or ball-homogeneity are replaced by the weaker condition (3.2).

Theorem 3.2. Let M be a non-coKähler almost coKähler 3-manifold. Then,
the following statements are equivalently.

• M is homogeneous.
• M is curvature homogeneous or ball-homogeneous and satisfies ∇ξh =

2fφh, f ∈ R.
• M is locally isometric to one of the three unimodular Lie groups E(1, 1),

Ẽ(2), H3 or a non-unimodular Lie group G1 whose Lie algebra is given
by [ξ, e] = γφe, [e, φe] = αφe, [φe, ξ] = 0, where both α and γ are
nonzero constants.

Proof. It was proved in [15] that a homogeneous non-coKähler almost coKähler

manifold is locally isometric to E(1, 1), Ẽ(2), H3 or G1. On the other hand, the
homogeneity implies curvature homogeneity and curvature homogeneity. Also,
one can check that ∇ξh = 2fφh, f ∈ R, holds for almost coKähler structures
on the above four Lie groups. Therefore, next we need only to prove that the
second statement implies the third one.

As M is assumed to be curvature homogeneous or ball-homogeneous, then
(3.2) is true. For a general non-coKähler almost coKähler 3-manifold, following
Lemma 3.1 we have

∇ξh =
1

λ
ξ(λ)h+ 2fφh.

In view of our assumption ∇ξh = 2fφh, we obtain ξ(λ) = 0, λ > 0 and f is a
constant. Moreover, it follows from (3.1) that

(3.11) ‖Q‖2 = 4λ4 + 2(σ(e))2 + 2(σ(φe))2 +
1

2
(r + 2λ2)2 + 8λ2f2.

According to Lemma 3.1, the Lie bracket on M is given as the following:

[ξ, e] = (f + λ)φe,

[φe, ξ] = (f − λ)e,

[e, φe] = − 1

2λ
(φe(λ) + σ(e))e+

1

2λ
(e(λ) + σ(φe))φe.

(3.12)

In view of r = constant, from Lemma 3.1 and (3.1) we obtain

(∇ξQ)ξ = −4λξ(λ)ξ + {ξ(σ(e))− fσ(φe)}e+ {fσ(e) + ξ(σ(φe))}φe,

(∇eQ)e = {e(σ(e))− 1

2λ
σ(φe)(φe(λ) + σ(e))}ξ

+ e(λ2 − 2λf)e− {λσ(e) + 2fφe(λ) + 2fσ(e)}φe,
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(∇φeQ)φe = {φe(σ(φe))− 1

2λ
σ(e)(e(λ) + σ(φe))}ξ

− {λσ(φe)− 2fe(λ)− 2fσ(φe)}e+ φe(λ2 + 2λf)φe.

Putting the previous three equations into the well known formula divQ =
1
2gradr and using f = constant, we obtain

e(σ(e)) + φe(σ(φe))− 1

2λ
(σ(φe)φe(λ) + 2σ(e)σ(φe) + σ(e)e(λ)) = 0,

ξ(σ(e)) + (f − λ)σ(φe) + 2λe(λ) = 0,

ξ(σ(φe))− (f + λ)σ(e) + 2λφe(λ) = 0.

(3.13)

Since the scalar curvature r, f and ‖Q‖2 are all constants, in view of ξ(λ) =
0, the action of ξ on ‖Q‖2 gives

(3.14) σ(e)ξ(σ(e)) + σ(φe)ξ(σ(φe)) = 0.

Adding the second term of (3.13) multiplied by σ(e) to the third term of (3.13)
multiplied by σ(φe) gives an equation. Comparing the resulting equation with
(3.14) we obtain

(3.15) e(λ)σ(e)− σ(e)σ(φe) + φe(λ)σ(φe) = 0,

where we have used λ > 0. Using ξ(λ) = 0, the first two terms of (3.12) gives

(3.16) ξ(e(λ)) = (f + λ)φe(λ), ξ(φe(λ)) = (λ− f)e(λ).

Taking into account (3.16) and the last two terms of (3.13), the action of ξ on
(3.15) gives

2(f + 2λ)σ(e)φe(λ) + 2(2λ− f)σ(φe)e(λ)− 2λ(e(λ))2

+ (f − λ)(σ(φe))2 − (f + λ)(σ(e))2 − 2λ(φe(λ))2 = 0.
(3.17)

Similarly, in view of (3.16) and the last two terms of (3.13), the action of ξ on
(3.17) gives

(3λ2 − λf − f2)σ(φe)φe(λ) + (3λ2 + λf − f2)σ(e)e(λ)

− 6λ2e(λ)φe(λ) + (f2 − λ2)σ(e)σ(φe) = 0.
(3.18)

In view of λ > 0, adding (3.15) multiplied by f2 − λ2 to (3.18) implies

(3.19) (2λ+ f)σ(e)e(λ) + (2λ− f)σ(φe)φe(λ)− 6λe(λ)φe(λ) = 0.

In view of (3.16) and the last two terms of (3.13), the action of ξ on (3.19)
gives

2(λ− f)σ(φe)e(λ) + 2(λ+ f)σ(e)φe(λ)

− (5λ− 2f)(e(λ))2 − (5λ+ 2f)(φe(λ))2 = 0.
(3.20)

In view of (3.16) and the last two terms of (3.13), the action of ξ on (3.20)
gives

(3.21) (λ2 − f2)σ(e)e(λ) + (λ2 − f2)σ(φe)φe(λ) + (2f2 − 7λ2)e(λ)φe(λ) = 0.

For simplicity, we continuous our discussions by the following several cases:
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Case 1: f = 0. In this case, taking into account λ > 0 and adding (3.21)
to (3.15) multiplied by −λ2 we obtain e(λ)φe(λ) = 0. We now assume that
e(λ) 6= 0 holds on some open subset and hence we obtain φe(λ) = 0. However,
in view of λ > 0 and f = constant, from the second term of (3.16) we have
e(λ) = 0, a contradiction. Similarly, if we assume φe(λ) 6= 0 holds on some
open subset, then from the first term of (3.16) we arrive at a contradiction.
Consequently, it follows that e(λ) = φe(λ) = 0 and hence by ξ(λ) = 0 we see
that λ is a constant. Therefore, from (3.17) we have σ(e) = σ(φe) = 0. In this
context, (3.12) becomes

[ξ, e] = λφe, [e, φe] = 0, [φe, ξ] = −λe,

where λ is a positive constant. We state that M is locally isometric to a
unimodular Lie group E(1, 1) of rigid motions of the Minkowski 2-space.

Case 2: f 6= 0. Subtracting (3.19) multiplied by λ2 − f2 from (3.21) multi-
plied by 2λ− f we have

(3.22) (2f(λ2 − f2)σ(e) + (8λ3 − 7λ2f + 2λf2 + 2f3)φe(λ))e(λ) = 0.

Next, we consider two subcases corresponding to (3.22).

Case 2.1: e(λ) 6= 0 holds on some open subset. In this case, from (3.22) we
have

(3.23) 2f(λ2 − f2)σ(e) + (8λ3 − 7λ2f + 2λf2 + 2f3)φe(λ) = 0.

In view of the second terms of (3.16) and (3.13), the action of ξ on (3.23) gives

(3.24) 2f(λ2− f2)(λ− f)σ(φe) + (λ− f)(8λ3− 11λ2f − 2λf2 + 2f3)e(λ) = 0.

Using the third term of (3.16) and the first term of (3.13), the action of ξ on
(3.24) gives

(3.25) 2f(λ2 − f2)2σ(e) + (λ2 − f2)(8λ3 − 15λ2f + 2λf2 + 2f3)φe(λ) = 0.

Subtracting (3.25) from (3.23) multiplied by λ2 − f2 gives

(3.26) λ2f(λ2 − f2)φe(λ) = 0.

Case 2.1.1: λ2 − f2 6= 0 holds on some open subset. In view of f 6= 0 and
λ > 0, from (3.26) we have φe(λ) = 0. Using this in (3.25) we have σ(e) = 0.
Now, (3.20) becomes 2(λ − f)σ(φe) − (5λ − 2f)e(λ) = 0. On the other hand,
the second term of (3.13) becomes (f −λ)σ(φe) + 2λe(λ) = 0. Comparing this
with previous relation gives λ = 2f and hence σ(φe) = 4e(λ), where we have
used still f 6= 0 and the assumption e(λ) 6= 0. In this context, (3.17) becomes
λ(e(λ))2 = 0. This contradicts the assumption e(λ) 6= 0.

Case 2.1.2: φe(λ) 6= 0. In view of f 6= 0, from (3.26) we have λ2 − f2 = 0.
This implies that λ is a positive constant and then we have φe(λ) = 0, a
contradiction.
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According to the above two subcases we conclude that (3.26) contradicts
the assumption e(λ) 6= 0. In other words, it follows from (3.22) that e(λ) = 0.
Next we focus on the study of this subcase.

Case 2.2: e(λ) = 0. Putting this into (3.21) gives

(3.27) (λ2 − f2)σ(φe)φe(λ) = 0.

Similarly, next we discuss two subcases corresponding to (3.27).

Case 2.2.1: σ(φe) 6= 0 holds on some open subset. In this case, it follows
from (3.27) that (λ2 − f2)φe(λ) = 0. If φe(λ) 6= 0 holds on some open subset,
it follows that λ is a constant, a contradiction. Thus, we have φe(λ) = 0 and
in view of ξ(λ) = 0 we observe that λ is a positive constant. Applying this in
(3.15) we have σ(e)σ(φe) = 0 and hence σ(e) = 0. Applying this in (3.17) we
obtain λ = f . Finally, from (3.11) we say that σ(φe) is a nonzero constant. In
this context, (3.12) becomes

(3.28) [ξ, e] = 2fφe, [e, φe] =
1

2f
σ(φe)φe, [φe, ξ] = 0,

where f is a positive constant. One can check that a Lie group whose Lie
algebra is given by (3.28) is non-unimodular because of

tr(adξ) = 0, tr(ade) =
1

2f
σ(φe) 6= 0, tr(adφe) = 0.

Here we remark that such Lie group corresponds to the (NC2) case shown in
[15, Theorem 4.1].

Case 2.2.2: σ(φe) = 0. Putting e(λ) = 0 into the first term of (3.16) we
obtain (f +λ)φe(λ) = 0. In this relation, φe(λ) 6= 0 reduces to λ = constant, a
contradiction. Then, it follows directly that φe(λ) = 0 and hence λ is a positive
constant because of ξ(λ) = 0. Applying this (3.17) we have

(3.29) (f + λ)(σ(e))2 = 0.

According to (3.11), we see that σ(e) is a constant. Next, we need to consider
the last two subcases as follows.

Case 2.2.2.1: σ(e) 6= 0. In this case, it follows from (3.29) that λ = −f , a
positive constant. Therefore, (3.12) becomes

(3.30) [ξ, e] = 0, [e, φe] =
1

2f
σ(e)e, [φe, ξ] = 2fe,

where f is a negative constant. By (3.30) and a simple calculation we obtain

tr(adξ) = 0, tr(ade) = 0, tr(adφe) = − 1

2f
σ(e).

According to the above relation, we state that M is locally isometric to a
non-unimodular Lie group. We remark that such Lie group corresponds still
to the (NC2) case shown in [15, Theorem 4.1].
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Case 2.2.2.2: σ(e) = 0. In this case, (3.12) becomes

(3.31) [ξ, e] = (f + λ)φe, [e, φe] = 0, [φe, ξ] = (f − λ)e.

As discussed in proof of Theorem 3.1, now M is locally isometric to the uni-
modular Lie group G. Moreover, G is the group E(1, 1) of rigid motions of

the Minkowski 2-space if −λ < f < λ. G is the universal covering Ẽ(2) of the
group of rigid motions of the Euclidean 2-space if either f > λ or f < −λ. G
is the Heisenberg group H3 if either f = λ or f = −λ. This completes the
proof. �

The Reeb vector field of the almost coKähler structure defined on Lie group
G1 is not an eigenvector field of the Ricci operator.

Corollary 3.1. A non-coKähler almost coKähler 3-manifold satisfying (3.2)
and ∇ξh = 2fφh, f ∈ R, is locally homogeneous.
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[18] W. Wang, A class of three dimensional almost coKähler manifolds, Palest. J. Math. 6

(2017), no. 1, 111–118.

[19] Y. Wang, Ricci tensors on three-dimensional almost coKähler manifolds, Kodai Math.
J. 39 (2016), no. 3, 469–483.

[20] , Almost co-Kähler manifolds satisfying some symmetry conditions, Turkish J.
Math. 40 (2016), no. 4, 740–752.

[21] K. Yamato, A characterization of locally homogeneous Riemann manifolds of dimension

3, Nagoya Math. J. 123 (1991), 77–90.

Yaning Wang
School of Mathematics and Information Sciences

Henan Normal University

Xinxiang 453007, Henan, P. R. China
Email address: wyn051@163.com




