• Title/Summary/Keyword: new bounds

Search Result 238, Processing Time 0.022 seconds

A NEW EXPONENTIAL DIRECTED DIVERGENCE INFORMATION MEASURE

  • JAIN, K.C.;CHHABRA, PRAPHULL
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.3_4
    • /
    • pp.295-308
    • /
    • 2016
  • Depending upon the nature of the problem, different divergence measures are suitable. So it is always desirable to develop a new divergence measure. In the present work, new information divergence measure, which is exponential in nature, is introduced and characterized. Bounds of this new measure are obtained in terms of various symmetric and non- symmetric measures together with numerical verification by using two discrete distributions: Binomial and Poisson. Fuzzy information measure and Useful information measure corresponding to new exponential divergence measure are also introduced.

New Upper Matrix Bounds for the Solution of the Continuous Algebraic Riccati Matrix Equation

  • Davies, Richard Keith;Shi, Peng;Wiltshire, Ron
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.776-784
    • /
    • 2008
  • In this paper, new upper matrix bounds for the solution of the continuous algebraic Riccati equation (CARE) are derived. Following the derivation of each bound, iterative algorithms are developed for obtaining sharper solution estimates. These bounds improve the restriction of the results proposed in a previous paper, and are more general. The proposed bounds are always calculated if the stabilizing solution of the CARE exists. Finally, numerical examples are given to demonstrate the effectiveness of the present schemes.

Asymmetric Robustness Bounds of Eigenvalue Distribution for Uncertain Linear Systems (불확실한 선형시스템 고유값 배치의 비대칭 강인한계)

  • 이재천
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.794-799
    • /
    • 1999
  • This study deals with robustness bounds estimation for uncertain linear systems with structured perturbations where the eigenvalues of the perturbed systems are guaranteed to stay in a prescribed region. Based upon the Lyapunov approach, new theorems to estimate allowable perturbation parameter bounds are derived. The theorems are referred to as the zero-order or first-order asymmetric robustness measure depending on the order of the P matrix in the sense of Taylor series expansion of perturbed Lyapunov equation. It is proven that Gao's theorem for the estimation of stability robustness bounds is a special case of proposed zero-order asymmetric robustness measure for eigenvalue assignment. Robustness bounds of perturbed parameters measured by the proposed techniques are asymmetric around the origin and less conservative than those of conventional methods. Numerical examples are given to illustrate proposed methods.

  • PDF

A new approach to robustness bounds using lyapunov stability concept

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.543-547
    • /
    • 1994
  • In this paper, the new approach and technique are introduced and derived from the original Lyapunov direct method which is used to decide the stability of system conveniently. This proposed technique modifies the formal concepts of the sufficient conditions of Lyapunov stability and is able to generate the methods for the robust design of control systems. Also, it applies to the dynamic systems with bounded perturbations and the results of the computer program using the new concept are compared with those of previous research papers and conventional Lyapunov direct method. It is possible to recognize the practical improvements of the estimation of robustness bounds of the systems.

  • PDF

Estimations of Zeros of a Polynomial Using Numerical Radius Inequalities

  • Bhunia, Pintu;Bag, Santanu;Nayak, Raj Kumar;Paul, Kallol
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.845-858
    • /
    • 2021
  • We present new bounds for the numerical radius of bounded linear operators and 2 × 2 operator matrices. We apply upper bounds for the numerical radius to the Frobenius companion matrix of a complex monic polynomial to obtain new estimations for the zeros of that polynomial. We also show with numerical examples that our new estimations improve on the existing estimations.

COMPARISON THEOREMS IN RIEMANN-FINSLER GEOMETRY WITH LINE RADIAL INTEGRAL CURVATURE BOUNDS AND RELATED RESULTS

  • Wu, Bing-Ye
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.421-437
    • /
    • 2019
  • We establish some Hessian comparison theorems and volume comparison theorems for Riemann-Finsler manifolds under various line radial integral curvature bounds. As their applications, we obtain some results on first eigenvalue, Gromov pre-compactness and generalized Myers theorem for Riemann-Finsler manifolds under suitable line radial integral curvature bounds. Our results are new even in the Riemannian case.

ON ESTIMATION OF ROOT BOUNDS OF POLYNOMIALS

  • Kim, Hye-Kyung;Park, Young-Kou
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.77-85
    • /
    • 1997
  • In this work we will show that, in the sense of the Maximum overestimation factor, the absolute root bound functional derived from the new formula for the divided difference is better than the other known results in this area.

  • PDF

Some Properties of Harmonic Functions Defined by Convolution

  • Dixit, Kaushal Kishor;Porwal, Saurabh
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.751-761
    • /
    • 2009
  • In this paper, we introduce and study a comprehensive family of harmonic univalent functions which contains various well-known classes of harmonic univalent functions as well as many new ones. Also, we improve some results obtained by Frasin [3] and obtain coefficient bounds, distortion bounds and extreme points, convolution conditions and convex combination are also determined for functions in this family. It is worth mentioning that many of our results are either extensions or new approaches to those corresponding previously known results.