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Abstract

In this paper, the new approach and technique
are introduced and derived from the original
Lyapunov direct method which is used to decide the
stability of stystem conveniently, This proposed
technique modifies the formal concepts of the
sufficient conditions of Lyapunov stability and is
able to generate the methods for the robust design
of control systems,

Also, it applies to the dynamic systems with
bounded perturbations and the results of the
computer program using the new concept are compared
with those of previous researh papers and
conventional Lyapunov direct method. It is
possible to recognize the practical improvements of

the estimation of robustness bounds of the systenms.

1. Description of the New Approach’ Method to

Robustness

The objective of the current investigation is
the development of a new Lyapunov-based technique
for the robust design of control systems subject to
structured perturbations, The proposed technique
provides better results for two basic robust
control design problem, the robust stability
problem and the uncertain system stabilization
problem. This new approach involves application of
the Lyapunov direct method to control design for
time-variant,

nonlinear systems with bounded

perturbations, Lyapunov direct methods are one of

the most popular way to determine the stability of
the systems. This new approach to the
determination of robustness. bounds is now
introduced, accompanied by consideration of
improved stability criterion for relaxing Lyapunov
stability conditions, The Lyapunov-based approach
technique is summarized and proposed directions for

further researches,

2. Introduction of Relaxing Lyapunov Stability

Condition

In this paper, new criterion of determining the
system stability originated from Lyapunov direct
method is introduced and called relaxing Lyapunov
stability condition, The original Lyapunov direct
method is convenient way to determine the system
stability without seolving the system equation even
if the systems are time-variant or nonlinear cases,
A new throrem is proved and described in this paper

concisely as follows:

Theorem Consider a system given

dX (X, t)

at where F € CQ8 Ui x R")

If there exist

a) a continuously differentiable and locally
positive-definite function V(t,X) and

b) a bounded function T(t,X) defined for t€({0,

@], X€B, and having a positive lower bound such
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that the function

Vi, X(1,¢t,X))de exists, the

V(X)) = I'

2

condition V'(t,X)<0 is fulfilled,

Prool) The prool of this theorem differs from the
classical proof of the Lyapunov theorem, It is the
sufficient condition to prove stability for a
selected initial instants t;, and ty=0 is selected
in this case, Because of the definition of V(t,X),
there exists a continuous and positive-definite
function W(X) such that

V(t,X)2W(X)>0, for X=0, X€EB,

V(t,0)=H(0)=0.

Choose the bounded range S,={ || X || =¢} such that S€
B,. The lower bound of W(x) on S, is obtained at a
certain point' X" of S, that is,

Inf W(X) = ¥(X") =a > 0,
X€S,

As V(0,X) is continuous and V(0,0)=0, it is
concluded that there exists a neighborhood [[X{ <&
2<¢€, such that for every |[Xoll <8 0<V(0, %) <a
/2. And T denotes the upper bound of T(t,X):

Sup T(t,X) =T,
{0,=) x B

Now &3 is arbitrarily chosen so that for every X,

satisfying | Xo || <63,

| IuV(t,X(t,O,Xo))dtl < % for uel0,7T1.
)

Denoting that & = min(8,83), for Xl <6y, 0%
V(0, X5)<a/2 and

| [ V(e X(2,0, X0k | <% for uelo, T .
0 ) 2

Thus consider an arbitrary non-trivial solution
with initial condition X, such that || X, <8,
given that trajectory of this solution remains
entirely inside of the range S, that is,

IX(t,0,%) | <&, for te[0,m).

Then, make an assumption, that is, at some instant

t=t*, the point of trajectory is for the first time

located on S;:

1x(t.0.%) I <e¢
IX(t%0.X) | = €.

The value of V(t,x) is obtained by caculating

for t€[0,t")

VWX (£,0,X0) = VIO, Xo) + [ Vs, X(x,0,x0))ds

The integral on the right-hand side can be

transformed to summation, writing
[ -1 ©
[ivexaox0 = 5 [ v, X X de

with
X(15,0,%)=X" , t'=rp, Ty (7, XEB, .
Using the definition in Theorem, all of the above
integration
V£, X(£,0,X0)) < V(0,Xo)+
V] V(e X(5,0, Xod)are |

VIt X(¢"0,X0)) <a

In definition, X(t%,0,X)€S, and V(t*, X(t’,0,%))2
a, it contradicts and proves the theorem, that is,
X(t%,0,%) is always remaining inside the boundary
and the system is asymptotically stable judging by
the Lyapunov stability concept.

3. Investigation of the Numerical Approach

In the actual dynamic systems, some numerica
approaches demonstrate the application of the
refaxing Lyapunov conditions. And it shows the
improvement of robustness bounds., One example is
drawn from other article and it is easy to compare
the result. Systems with structured perturbations
are introduced for the purposes of problem analysis
with the proposed numerical and computational
techniques, Fortran is the principal computer
language used for programming, in conjunction with
a symboiic algebraic calculation directed at the
analytical solution of complicated mathematical
problems, This application serves to minimize the
large truncated errors inthe computer calculation,
while providing methods for achieving exact
solutions of problens,

The numerical procedures

can be simply described as follows:

A) First, the quadratic form is selected as the
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Lyapunov candidate function, The bounds of
uncertainty are defined by calculating the Lyapunov
derivatives,
B) Second, the new bounds of uncertainty are
selected, with the. function V'(X) considered for
the initial cpnditions belonging to a unit sphere,
C) For these initial conditions, for which the
Lyapunov derivative remains negative, there is no
need to find out a solution, = For the remaining
solutions, integration is extended until the
function derivative is negative,

The following two examples are analyzed to

verify the effectivity of the proposed numerical

procedures,

Example 1. Consider the system

%’ti = A + g(4,X)GX , XeR?

A= [?1 -11]' G - [(1)8] '

the bound k on g(t,X) is such that if |g(t.X)|¢
k, the trivial solution of system equation is
asymptotically stable, A quadratic form of the
Lyapunov function V is chosen as Lyapunov candidate
function V=X'PX, dV/dt=X"(A'P+PA)X. Solving for the
matrix P to obtain the best Lyapunov function
results in V = X% + Xk ¢ X2 .

Then, V is differentiated with respect to time,

% =2 X+ XiX2 + X1Xa + 2Xe2 X2,

and replace the time derivatives of state variable

A - X X XL Xy - Xl
+ 2Xal (-1 + @) X1 - Xal
- X+ (1 - 209X X+ X% < 0

If dv/dt fulfills the condition dV/dt<0, then the
above equation must fulfil the  following
conditions:

a)l-g>0, g<1, and
b) (1 - 2g)* - 4(1-g) < 0, Igl(izg— = 0.8660254 .
If the case is positive, then the system is

asymptotic stable. The numerical procedure

introduced previously is based on the result |g| =

0.96, signifying a 10% improvement in the estimate

of robustness bound,

Example 2) Now, the three-dimensional closed-1loop
system studied in Siljak, D.,D, paper [12]
previously is:

_ -2+ky 0 -l+k
S:X-= 0 -3+k2 O X
-1+k, ~1+k3 '4*’(1

This case is a two-degree of freedom dynamic system
with two structured perturbations, k; and k.
Applying the Lyapunov direct method, V= X'PX and
dV/dt=X"(A'P+PA)X and the equation AP+PA=-1 is
solved, using the symbolic calculation package

software, It follows that

2 9 1
7 476 14

P = % -4&76— -%— ,vhere P is the
N S |

14 476 7

exact solution and positive-definite. Then, dV/dt

is calculated by the matrix

3’(1-7 - 25’(14?1(1 ?kx
7 476 7
T _ 26k2+2k; 36k2-119 STka-2ky
AP + PA - 476 119 a6
2k 57k2-2k) ki-7
7 476 7

If the matrix A'P+PA had been negative-definite,
the selected system would always be asymptotically
For A'P+PA to be negative-definite, the
regions k; and k, should be |k [ < 1.60 and | kg | ¢

stable,

2.74. For the current investigation, the regions
considered above are drafted to be rectangular
spaces, Using the same proposed technique, the k,
and kg is extended. For |k |<l1.60, the region of
I k2| is extended to 2.97. As may be seen from
the results, the | kz | region is extended with an

8.3% improvement in robustness estimate.

5. Conclusions

The new proposed technique estimate ‘the
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stability region ol the dynamic systems with
bounded perturbations have been presented in this
paper, New introducing stability criteria and
conditions were presented and considered for chosen
vexamples. The theorems were formulated to serve as
a basis for both

analytical and numerical

procedures, The results demonstrateed improvements
of the bounds in some extent and asymptotic
stability for selected ranges of parameters, This
new technique could be extended to
multi-dimensional -and multi-degree of freedom cases
incorporated into standard design procedures based
on the Lyapunov stability concept, Next, the
future working area will be the developments of the
selected actual and practical models to improve the
procedures and robustness

efficient numerical

bounds,
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