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COMPARISON THEOREMS IN RIEMANN-FINSLER

GEOMETRY WITH LINE RADIAL INTEGRAL CURVATURE

BOUNDS AND RELATED RESULTS

Bing-Ye Wu

Abstract. We establish some Hessian comparison theorems and volume
comparison theorems for Riemann-Finsler manifolds under various line

radial integral curvature bounds. As their applications, we obtain some

results on first eigenvalue, Gromov pre-compactness and generalized My-
ers theorem for Riemann-Finsler manifolds under suitable line radial in-

tegral curvature bounds. Our results are new even in the Riemannian
case.

1. Introduction

Comparison technique is a powerful tool in global analysis in differential ge-
ometry, and it has been well developed in Riemannian geometry. Volume, as
the important geometric invariant, plays a key role in comparison technique.
Recently comparison technique has been developed for Finsler manifolds and
the relationship between curvature and topology of Finsler manifolds has also
been investigated [1, 3–6, 12]. It should be pointed out here that volume form
is uniquely determined by the given Riemannian metric, while there are dif-
ferent choices of volume forms for Finsler metrics. As the result, we usually
need to control the S-curvature in order to obtain volume comparison theorems
as well as results on curvature and topology. This additional assumption on
S-curvature has been removed by author recently by using the extreme vol-
ume forms (the maximal and minimal volume forms) [7, 10], and we may also
consider different curvature bounds, such as integral curvature bounds [8, 11].

The main purpose of the present paper is to study comparison theorems un-
der line radial integral curvature bounds. We establish some Hessian compari-
son theorems and volume comparison theorems for Riemann-Finsler manifolds
under various line radial integral curvature bounds. As their applications, we
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obtain some results on first eigenvalue, Gromov pre-compactness and general-
ized Myers theorem for Riemann-Finsler manifolds under suitable line radial
integral curvature bounds. Our results are new even in the Riemannian case.

2. Finsler geometry

Let (M,F ) be a Finsler n-manifold with Finsler metric F : TM → [0,∞).
Let (x, y) = (xi, yi) be local coordinates on TM , and π : TM\0 → M the
natural projection. Unlike in the Riemannian case, most Finsler quantities are
functions of TM rather than M . The fundamental tensor gij and the Cartan
tensor Cijk are defined by

gij(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj
, Cijk(x, y) :=

1

4

∂3F 2(x, y)

∂yi∂yj∂yk
.

Let V = V i∂/∂xi be a non-vanishing vector field on an open subset U ⊂ M .
One can introduce a Riemannian metric g̃ = gV and a linear connection ∇V
on the tangent bundle over U as follows:

gV (X,Y ) := XiY jgij(x, v), ∀X = Xi ∂

∂xi
, Y = Y i

∂

∂xi
;

∇V∂

∂xi

∂

∂xj
:= Γkij(x, v)

∂

∂xk
,

here Γkij are the Chern connection coefficients. From the torsion freeness and
almost g-compatibility of Chern connection we have

(2.1) ∇VXY −∇VYX = [X,Y ],

(2.2) X · gV (Y,Z) = gV (∇VXY,Z) + gV (Y,∇VXZ) + 2CV (∇VXV, Y, Z),

here CV is defined by

CV (X,Y, Z) = XiY jZkCijk(x, v),

and it satisfies

(2.3) CV (V,X, Y ) = 0.

By (2.1)-(2.3) we see that the Chern connection ∇V and the Levi-Civita con-

nection ∇̃ of g̃ are related by

gV (∇VXY,Z) = gV (∇̃XY, Z)−CV (∇VXV, Y, Z)

−CV (∇VY V,X,Z) + CV (∇VZV,X, Y ).(2.4)

The Chern curvature RV (X,Y )Z for vector fields X,Y, Z on U is defined by

RV (X,Y )Z := ∇VX∇VY Z −∇VY∇VXZ −∇V[X,Y ]Z.

In the Riemannian case this curvature does not depend on V and coincides with
the Riemannian curvature tensor. For a flag (V ;P ) (or (V ;W )) consisting of
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a non-zero tangent vector V ∈ TxM and a 2-plane P ⊂ TxM with V ∈ P the
flag curvature K(V ;P ) is defined as follows:

K(V ;P ) = K(V ;W ) :=
gV (RV (V,W )W,V )

gV (V, V )gV (W,W )− gV (V,W )2
.

Here W is a tangent vector such that V,W span the 2-plane P and V ∈ TxM is
extended to a geodesic field, i.e., ∇VV V = 0 near x. In the Riemannian case the
flag curvature is the sectional curvature of the 2-plane P and does dot depend
on V . In the literature there are several connections used in Finsler geometry,
but for the definition of the flag curvature it does not make a difference whether
one uses the Chern, the Cartan or the Berwald connection. The Ricci curvature
of V is defined as

Ric(V ) =
∑
i

K(V ;Ei),

where E1, . . . , En is the local gV -orthonormal frame over U . By (2.4) it is

easy to see that ∇VV V = ∇̃V V , and consequently, V is a geodesic field of F
if and only if it is a geodesic field of g̃, and when V is a geodesic field, then

∇VV = ∇̃V , and for any plane P containing V , the flag curvature K(P, V ) is

just the sectional curvature K̃(P ) of g̃ (see [3, 4]).
Given a Finsler manifold (M,F ), the dual Finsler metric F ∗ on M is defined

by

F ∗(ξx) := sup
Y ∈TxM\0

ξ(Y )

F (Y )
, ∀ξ ∈ T ∗M,

and the corresponding fundamental tensor is defined by

g∗kl(ξ) =
1

2

∂2F ∗2(ξ)

∂ξk∂ξl
.

The Legendre transformation l : TM → T ∗M is defined by

l(Y ) =

{
gY (Y, ·), Y 6= 0,
0, Y = 0.

It is well-known that for any x ∈M , the Legendre transformation is a smooth
diffeomorphism from TxM\0 onto T ∗xM\0, and it is norm-preserving, namely,
F (Y ) = F ∗(l(Y )),∀Y ∈ TM . Consequently, gij(Y ) = g∗ij(l(Y )).

Now let f : M → R be a smooth function on M . The gradient of f is defined
by ∇f = l−1(df). Thus we have

df(X) = g∇f (∇f,X), X ∈ TM.

Let U = {x ∈ M : ∇f |x 6= 0}. We define the Hessian H(f) of f on U as
follows:

H(f)(X,Y ) := XY (f)−∇∇fX Y (f), ∀X,Y ∈ TM |U .
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By (2.1)-(2.4) it is easy to know that H(f) is symmetric, and it can be rewritten
as (see [11,12])

(2.5) H(f)(X,Y ) = g∇f (∇∇fX ∇f, Y ).

A volume form dµ on Finsler manifold (M,F ) is nothing but a global non-
degenerate n-form on M . In local coordinates we can express dµ as dµ =
σ(x)dx1 ∧ · · · ∧ dxn. The frequently used volume forms in Finsler geometry
are so-called Busemann-Hausdorff volume form and Holmes-Thompson volume
form. In [7] we introduce the maximal and minimal volume forms for Finsler
manifolds which play the important role in comparison technique in Finsler
geometry. They are defined as following. Let

dVmax = σmax(x)dx1 ∧ · · · ∧ dxn

and
dVmin = σmin(x)dx1 ∧ · · · ∧ dxn

with

σmax(x) := max
y∈TxM\0

√
det(gij(x, y)), σmin(x) := min

y∈TxM\0

√
det(gij(x, y)).

Then it is easy to check that the n-forms dVmax and dVmin are well-defined on
M . dVmax and dVmin are called the maximal volume form and the minimal
volume form of (M,F ), respectively. Both maximal volume form and minimal
volume form are called extreme volume form, and we shall denote by dVext the
maximal or minimal volume form. The volume with respect to dVmax (resp.
dVmin) is called the maximal volume (resp. minimal volume). Maximal volume
and minimal volume are both called extreme volume.

The uniformity function µ : M → R is defined by

µ(x) = max
y,z,u∈TxM\0

gy(u, u)

gz(u, u)
.

µF = maxx∈M µ(x) is called the uniformity constant. It is clear that

µ−1F 2(u) 6 gy(u, u) 6 µF 2(u).

Similarly, the reversible function λ : M → R is defined by

λ(x) = max
y∈TxM\0

F (y)

F (−y)
.

λF = maxx∈M λ(x) is called the reversibility of (M,F ), and (M,F ) is called
reversible if λF = 1. It is clear that λ(x)2 6 µ(x).

Fix x ∈ M , let Ix = {v ∈ TxM : F (v) = 1} be the indicatrix at x. For
v ∈ Ix, the cut-value c(v) is defined by

c(v) := sup{t > 0 : d(x, expx(tv)) = t}.
Then, we can define the tangential cut locus C(x) of x by C(x) := {c(v)v :
c(v) < ∞, v ∈ Ix}, the cut locus C(x) of x by C(x) = expxC(x), and the
injectivity radius ix at x by ix = inf{c(v) : v ∈ Ix}, respectively. It is known
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that C(x) has zero Hausdorff measure in M . Also, we set Dx = {tv : 0 6 t <
c(v), v ∈ Ix} and Dx = expxDx. It is known that Dx is the largest domain,
which is starlike with respect to the origin of TxM for which expx restricted to
that domain is a diffeomorphism, and Dx = M\C(x).

In the following we consider the polar coordinates on D(x). For any q ∈
D(x), the polar coordinates of q are defined by (r, θ)=(r(q), θ1(q), . . . , θn−1(q)),
where r(q) = F (v), θα(q) = θα(u), here v = exp−1

x (q) and u = v/F (v). It is
clear that r is just the distance function with respect to x. Then by the Gauss
lemma (see [1], page 140), the unit radial coordinate vector T = d(expx)

(
∂
∂r

)
is gT -orthogonal to coordinate vectors ∂α which is defined by

∂α|expx(ru) = d(expx)

(
∂

∂θα

)∣∣∣∣
expx(ru)

= d(expx)ru

(
r
∂

∂θα

)
= rd(expx)ru

(
∂

∂θα

)
for α = 1, . . . , n − 1, and consequently, T = ∇r. Consider the singular Rie-
mannian metric g̃ = g∇r on D(x), then it is clear that

g̃ = dr2 + g̃αβdθ
αdθβ , g̃αβ = g∇r(∂α, ∂β).

3. Hessian comparison theorems

Notations as above. Notice that T = ∇r is a geodesic field, by (2.5) it follows
that H(r)(∇r, ·) = 0, thus we need only to consider H(r) on the normal space
with respect to the radial geodesic field ∇r. Let E1, . . . , En−1, En = ∇r be the
local g∇r-orthonormal frame along geodesic rays, by (2.1)-(2.5) we get

∂

∂r
(H(r)(Ei, Ej))

= ∇r · g∇r
(
∇∇rEi
∇r, Ej

)
= g∇r

(
∇∇r∇r∇∇rEi

∇r, Ej
)

+ g∇r
(
∇∇rEi
∇r,∇∇r∇rEj

)
= g∇r

(
R∇r(∇r, Ei)∇r, Ej

)
+ g∇r

(
∇∇r[∇r,Ei]

∇r, Ej
)

+
∑
k

g∇r
(
∇∇rEi
∇r, Ek

)
g∇r

(
Ek,∇∇r∇rEj

)
= − g∇r

(
R∇r(Ei,∇r)∇r, Ej

)
+ g∇r

(
∇∇r∇∇r

∇rEi
∇r, Ej

)
− g∇r

(
∇∇r∇∇r

Ei
∇r∇r, Ej

)
+
∑
k

g∇r
(
∇∇rEi
∇r, Ek

)
g∇r

(
Ek,∇∇r∇rEj

)
= − g∇r

(
R∇r(Ei,∇r)∇r, Ej

)
+
∑
k

g∇r
(
∇∇r∇rEi, Ek

)
g∇r

(
∇∇rEk
∇r, Ej

)
−
∑
k

g∇r
(
∇∇rEi
∇r, Ek

)
g∇r

(
∇∇rEk
∇r, Ej

)
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+
∑
k

g∇r
(
∇∇rEi
∇r, Ek

)
g∇r

(
Ek,∇∇r∇rEj

)
,

and consequently,

∂

∂r
(H(r)(Ei, Ej)) = − g∇r

(
R∇r(Ei,∇r)∇r, Ej

)
−
∑
k

H(r)(Ei, Ek) ·H(r)(Ek, Ej)

+
∑
k

H(r)(Ek, Ej)g∇r
(
∇∇r∇rEi, Ek

)
+
∑
k

H(r)(Ei, Ek)g∇r
(
Ek,∇∇r∇rEj

)
.(3.1)

We note here that the similar formula was obtained when E1, . . . , En−1 are
parallel along geodesic rays, here we need this general formula for later use.
The volume form of g̃ is dVg̃ = σ̃(r, θ)dr ∧ dθ1 ∧ · · · ∧ θn−1 := σ̃(r, θ)dr ∧ dθ,
here σ̃(r, θ) =

√
det(g̃αβ). Let h(r) = traceg∇r

H(r), by (2.1)-(2.5) and (3.1)
we have (see also [11,12])

(3.2)
∂

∂r
(log σ̃) = h,

∂h

∂r
+

h2

n− 1
6 −Ric(∇r).

Let
σc(r) = sc(r)

n−1, hc(r) = (n− 1)ctc(r),

where

sc(r) =


sin(
√
cr)√
c

, c > 0,

r, c = 0,
sinh(

√
−cr)√
−c , c < 0,

ctc(r) =


√
c cot(

√
cr), c > 0,

1
r , c = 0,√
−c coth(

√
−cr), c < 0.

Then

(3.3) (log σc)
′ = hc, h′c +

h2
c

n− 1
= −(n− 1)c.

Let us first consider line integrate Ricci curvature bounds. In polar coordinates
we write ρc = ρc(r, θ) = max{(n−1)c−Ric(∇r), 0}, and define ψc = ψc(r, θ) =
max{0, h(r, θ)− hc(r)}. It is clear that ψc is defined on Dx\{x} (when c > 0,
we require that r < π/

√
c). For sufficiently small ε let a and b be the lower and

upper bounds of flag curvature on Bx(ε), then by Hessian comparison theorem
[12] it follows that

hb(r) 6 h(r, θ) 6 ha(r), ∀r < ε,

which together with the fact that

lim
r→0

(ha(r)− hb(r)) = 0, ∀a 6= b,

we have

(3.4) lim
r→0+

ψc(r, θ) = 0.
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On the other hand, by (3.2) and (3.3) we have that ψc is absolutely continuous
on Dx\{x} and satisfies

(3.5)
∂ψc
∂r

+
ψ2
c

n− 1
+ 2

ψc · hc
n− 1

6 ρc.

For any p > 1, by multiplying (3.5) by (2p− 1)ψ2p−2
c and simplifying we get

(3.6)
∂

∂r
ψ2p−1
c +

2p− 1

n− 1
ψ2p
c +

4p− 2

n− 1
ψ2p−1
c hc 6 (2p− 1)ρcψ

2p−2
c .

We assume that r 6 π
2
√
c

when c > 0, then hc > 0. Integrating (3.6) from 0 to

r and using (3.4) and the Hölder’s inequality we have

ψ2p−1
c (r, θ) +

2p− 1

n− 1

∫ r

0

ψ2p
c (t, θ)dt

6 (2p− 1)

∫ r

0

ρc(t, θ)ψ
2p−2
c (t, θ)dt

6 (2p− 1)

(∫ r

0

ρpc(t, θ)dt

) 1
p
(∫ r

0

ψ2p
c (t, θ)dt

)1− 1
p

.(3.7)

By (3.7) we easily obtain∫ r

0

ψ2p
c (t, θ)dt 6 (n− 1)p

∫ r

0

ρpc(t, θ)dt,

which together with (3.7) yields

(3.8) ψ2p−1
c (r, θ) 6 (2p− 1)(n− 1)p−1

∫ r

0

ρpc(t, θ)dt.

By the definition of ψc it is clear that h 6 hc +ψc, thus we have the following:

Theorem 3.1. Let (M,F ) be a forward complete Finsler n-manifold. Suppose
that r = d(x, ·) is smooth at y ∈ M , and γ be the unique minimal normal
geodesic from x to y. For c ∈ R, p > 1 (we require that r(y) 6 π

2
√
c

when

c > 0), we have

traceg∇r
H(r)(y)

6 (n− 1)ctc(r(y))

+

[
(2p− 1)(n− 1)p−1

∫
γ

(max{(n− 1)c−Ric(γ′(t)), 0})p dt
] 1

2p−1

.

In the following we consider the case when c > 0. In this situation hc(r) =√
c cot

√
cr, and (3.6) can be written as

∂

∂r
ψ2p−1
c +

4p− 2

n− 1
ψ2p−1
c ·

√
c cot(

√
cr) +

2p− 1

n− 1
ψ2p
c 6 (2p− 1)ρcψ

2p−2
c .
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The integrating factor of the first terms is sin
4p−2
n−1 (

√
cr). Multiplying by the

integrating factor and integrating from 0 to r we get

sin
4p−2
n−1 (

√
cr)ψ2p−1

c (r, θ) +
2p− 1

n− 1

∫ r

0

sin
4p−2
n−1 (

√
ct)ψ2p

c (t, θ)dt

(3.9)

6 (2p− 1)

∫ r

0

sin
4p−2
n−1 (

√
ct)ρc(t, θ)ψ

2p−2
c (t, θ)dt

6 (2p− 1)

(∫ r

0

sin
4p−2
n−1 (

√
ct)ρpc(t, θ)dt

) 1
p
(∫ r

0

sin
4p−2
n−1 (

√
ct)ψ2p

c (t, θ)dt

)1− 1
p

.

By (3.9) we easily obtain

(3.10) sin
4p−2
n−1 (

√
cr)ψ2p−1

c (r, θ) 6 (2p− 1)(n− 1)p−1

∫ r

0

ρpc(t, θ)dt.

Thus we have:

Theorem 3.2. Let (M,F ) be a forward complete Finsler n-manifold. Suppose
that r = d(x, ·) is smooth at y ∈ M , γ is the unique minimal normal geodesic
from x to y, and r(y) < π√

c
for some c > 0. Then for any p > 1 we have

traceg∇r
H(r)(y)

6 (n− 1)
√
c cot(

√
cr(y))

+

[
(2p− 1)(n− 1)p−1

sin
4p−2
n−1 (

√
cr(y))

∫
γ

(max{(n− 1)c−Ric(γ′(t)), 0})p dt

] 1
2p−1

.

Now let c < 0, we define %c = %c(r, θ) = max{Ric(∇r) − c, 0} and ϕc =

ϕc(r, θ) = max{0, λc(r) − h(r, θ)} with λc(r) = hc(r)
n−1 =

√
−c coth(

√
−cr). We

assume that M has nonpositive flag curvature, then by Hessian comparison
theorem [12] it follows that the eigenvalues of H(r) are all nonnegative. Thus
we have ∑

i,j

(H(r)(Ei, Ej))
2 6 h(r)2,

which together with (3.1) yields

(3.11)
∂h

∂r
+ h2 > −Ric(∇r).

Since λc(r) =
√
−c coth(

√
−cr), it satisfies

(3.12) λ′c + λ2
c = −c.

(3.11) and (3.12) implies that

(3.13)
∂

∂r
ϕc + ϕ2

c + 2ϕch 6 %c.
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With (3.13) at hand, we can prove the following result with the same method
as in Theorem 3.1.

Theorem 3.3. Let (M,F ) be a forward complete Finsler n-manifold with non-
positive flag curvature. Suppose that r = d(x, ·) is smooth at y ∈ M , and γ be
the unique minimal normal geodesic from x to y. Then for any c < 0, p > 1
we have

traceg∇r
H(r)(y) >

√
−c coth(

√
−cr(y))

−
[
(2p− 1)

∫
γ

(max{Ric(γ′(t))− c, 0})p dt
] 1

2p−1

.

In the following we consider the line integrate flag curvature bounds. No-
tice that H(r) is a symmetric bilinear form, we may choose the local frame
E1, . . . , En−1, En = ∇r such that Ei, 1 6 i 6 n − 1 are eigenvectors of H(r)
with eigenvalues λi, and by (2.2), (2.3) and (3.1) it follows that

(3.14)
∂

∂r
λi + λ2

i = K(∇r;Ei).

Let

K(∇r) = max
g∇r(∇r,E)=0

K(∇r;E),

and φi = φi(r, θ) = max{0, λc(r)− λi(r, θ)} for 1 6 i 6 n− 1. Then by (3.12)
and (3.14) we get

(3.15)
∂

∂r
φi + φ2

i + 2φiλi 6 max{K(∇r)− c, 0}, 1 6 i 6 n− 1.

Now we assume that c < 0, and M has nonpositive flag curvature, then by
(3.15) and the similar argument as in Theorem 3.1 we obtain:

Theorem 3.4. Let (M,F ) be a forward complete Finsler n-manifold with non-
positive flag curvature. Suppose that r = d(x, ·) is smooth at y ∈ M , and γ be
the unique minimal normal geodesic from x to y. Then for any c < 0, p > 1,
and X ∈ TyM with g∇r(∇r,X) = 0 and g∇r(X,X) = 1 we have

H(r)(X,X) >
√
−c coth(

√
−cr(y))

−
[
(2p− 1)

∫
γ

(
max{K(∇r)− c, 0}

)p
dt

] 1
2p−1

.

4. Volume comparison theorems

To study the volume comparison theorem, we shall use polar coordinates
described in §2. Fix x ∈M . For r > 0, let Dx(r) ⊂ Ix be defined by Dx(r) =
{v ∈ Ix : rv ∈ Dx}. It is easy to see that Dx(r1) ⊂ Dx(r2) for r1 > r2 and
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Dx(r) = Ix for r < ix. Since C(x) has zero Hausdorff measure in M , we have

(4.1)

volg̃(Bx(R)) =

∫
Bx(R)

dVg̃ =

∫
Bx(R)∩Dx

dVg̃

=

∫
exp−1

x (Bx(R))∩Dx

exp∗x(dVg̃) =

∫ R

0

dr

∫
Dx(r)

σ̃(r, θ)dθ.

Let

Vc,Λ,n(R) = vol(Sn−1(1))

∫ R

0

eΛtsc(t)
n−1dt.

When Λ = 0, Vc,0,n(R) is equal to vol(Bnc (R)) when R 6 ic, here Bnc (R) de-
notes the geodesic ball of radius R in space form of constant c, and ic the
corresponding injectivity radius. The following lemma is crucial to prove vol-
ume comparison theorem.

Lemma 4.1. Suppose that f, g are two positive integrable functions of t, and
f
g is monotone increasing (resp. decreasing). Then the function∫ r

0

f(t)dt∫ r

0

g(t)dt

is also monotone increasing (resp. decreasing).

Now we are ready to prove the following relative volume comparison theorem
with upper line integrate radial curvature bounds.

Theorem 4.2. Let (M,F ) be a forward complete Finsler n-manifold with non-
positive flag curvature, and c < 0, p > 1.

(1) Suppose that there is C > 0 such that the radial flag curvature at x ∈M
satisfies ∫

γ

(
max{K(∇r)− c, 0}

)p
dt 6 C

for any minimal normal geodesic γ issuing from x, then

volext(Bx(r))

Vc,Λ,n(r)
6 max
x∈Bx(R)

µ(x)
n
2 · volext(Bx(R))

Vc,Λ,n(R)

holds for any r < R 6 ix, here volext denotes the extreme volume (i.e., the max-

imal volume volmax or minimal volume volmin), Λ = −(n− 1) [(2p− 1)C]
1

2p−1 ,
and ix the injectivity radius of x.

(2) Suppose that there is C > 0 such that the radial Ricci curvature at x ∈M
satisfies ∫

γ

(max{Ric(∇r)− c, 0})p dt 6 C
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for any minimal normal geodesic γ issuing from x, then

volext(Bx(r))

Vc,Λ,2(r)
6 max
x∈Bx(R)

µ(x)
n
2 · volext(Bx(R))

Vc,Λ,2(R)

holds for any r < R 6 ix, here Λ = − [(2p− 1)C]
1

2p−1 .

Proof. Here we only prove (1), (2) may be verified similarly. By (3.2) and
Theorem 3.4 we have

∂

∂r
log σ̃ = h > (n− 1)

[√
−c coth(

√
−cr)− ((2p− 1)C)

1
2p−1

]
=

d

dr
log
(
eΛr sinhn−1(

√
−cr)

)
, Λ = −(n− 1) [(2p− 1)C]

1
2p−1 .(4.2)

From (4.2) we see that the function∫
Ix

σ̃(r, θ)dθ

vol(Sn−1)eΛr sinhn−1(
√
−cr)

is monotone increasing about r(6 ix), and thus by Lemma 4.1 and (4.1) the
function ∫ R

0

∫
Ix

σ̃(r, θ)drdθ

vol(Sn−1)

∫ R

0

eΛr sinhn−1(
√
−cr)dr

=
volg̃(Bx(R))

Vc,Λ,n(R)

is also monotone increasing for R 6 ix. Notice that dVmin 6 dVg̃ 6 dVmax 6
µ(x)

n
2 · dVmin (see e.g., [7, 11]), it follows that

volmin(Bx(r))

Vc,Λ,n(r)
6

volg̃(Bx(r))

Vc,Λ,n(r)
6

volg̃(Bx(R))

Vc,Λ,n(R)
6 max
x∈Bx(R)

µ(x)
n
2 · volmin(Bx(R))

Vc,Λ,n(R)

holds for any r < R 6 ix. Similarly,

volmax(Bx(r))

Vc,Λ,n(r)
6 max
x∈Bx(R)

µ(x)
n
2 · volmax(Bx(R))

Vc,Λ,n(R)

for any r < R 6 ix, and (1) is proved. �

We also have the following relative volume comparison theorem with line
integrate radial Ricci curvature bound.

Theorem 4.3. Let (M,F ) be a forward complete Finsler n-manifold. For
c ∈ R, p > 1, if there exists C > 0 such that the radial Ricci curvature satisfies∫

γ

(max{(n− 1)c−Ric(∇r), 0})p dt 6 C
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for any minimal normal geodesic γ issuing from x, then for any 0 < r < R (we
require R < π√

c
when c > 0),

volext(Bx(r))

Vc,Λ,n(r)
> max
x∈Bx(R)

µ(x)−
n
2 · volext(Bx(R))

Vc,Λ,n(R)
,

here

(4.3) Λ = Λ(n, p, C, c, R) =


[
(2p− 1)(n− 1)p−1C

] 1
2p−1 , c 6 0,[

(2p− 1)(n− 1)p−1C

sin
4p−2
n−1 (

√
cR)

] 1
2p−1

, c > 0.

Proof. From (3.2), Theorems 3.1 and 3.2 it is clear that

(4.4)
∂

∂r
log σ̃ = traceg∇r

H(r) 6 (n− 1)ctc(r) + Λ =
d

dr
log
(
eΛrsc(r)

n−1
)
,

here Λ is given by (4.3). (4.4) means that the function

σ̃(r, θ)

eΛrsc(r)n−1

is monotone decreasing for r where it is smooth. Noting that Dx(R) ⊂ Dx(r)
for R > r > 0, we have for R > r > 0,∫

Dx(r)

σ̃(r, θ)dθ

eΛrsc(r)n−1
=

∫
Dx(r)

σ̃(r, θ)

eΛrsc(r)n−1
dθ >

∫
Dx(R)

σ̃(r, θ)

eΛrsc(r)n−1
dθ

>
∫
Dx(R)

σ̃(R, θ)

eΛRsc(R)n−1
dθ =

∫
Dx(R)

σ̃(R, θ)dθ

eΛRsc(R)n−1
,

which together with (4.1) and Lemma 4.1 implies that

volg̃(Bx(R))

Vc,Λ,n(R)
=

∫ R

0

dr

∫
Dx(r)

σ̃(r, θ)dθ

vol(Sn−1)

∫ R

0

eΛrsc(r)
n−1dr

is monotone decreasing for any R > 0 (we require R < π√
c

when c > 0). Now

the theorem follows similarly as Theorem 4.2. �

5. Gromov pre-compactness theorem

The notion of Hausdorff distance between metrics spaces was generalized by
M. Gromov, and the corresponding pre-compactness theorem for Riemannian
manifolds was proved in [2]. Gromov pre-compactness property has been gen-
eralized to Finsler manifolds by Shen [3] in reversible case and by Shen and
Zhao [5] in non-reversible case. To state our result let us first recall some no-
tations related to Gromov pre-compactness, for details one is referred to see
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[5]. As we have seen before, any Finsler manifold (M,F ) induces a general
metric space (M,d). Let (Mδ, dδGH) denote the collection of compact general
metric space with δ-Gromov-Hausdorff distance dδGH whose reversibilities are
not large than δ <∞, and CapM (ε) be the maximal number of disjoint forward
geodesic ball of radius ε in M . Also, let (Mδ

∗, d
δ
GH) be the collection of proper

pointed general metric space whose reversibilities are not large than δ <∞.

Lemma 5.1 ([5]). (1) Let C ⊂ (Mδ, dδGH) be a class satisfying the following
conditions:

(a) There is a constant D such that diamM 6 D for all M ∈ C.
(b) For each ε > 0 there exists N = N(ε) < ∞ such that CapM (ε) 6 N(ε)

for all M ∈ C.
Then C is pre-compact in the δ-Gromov-Hausdorff topology.
(2) (Mδ

∗, d
δ
GH) is pre-compact if for each r > 0 and ε > 0, there exists a

number N = N(r, ε) < ∞ such that for every Bx(r) ⊂ (M,x) ∈ C, one has
CapBx(r)

(ε) 6 N(r, ε).

By Theorem 4.3 and Lemma 5.1 we can prove:

Theorem 5.2. For any integer n > 2, c ∈ R, p > 1 and C,D > 0(D < π/
√
c

when c > 0), the following classes are pre-compact in the (pointed) δ-Gromov-
Hausdorff topology:

(1) The collection {(Mi, Fi)} of compact Finsler n-manifolds satisfying con-
ditions

diam(Mi) 6 D,∫
γ

(max{(n− 1)c−Ric(∇r), 0})p dt 6 C

for any minimal normal geodesic γ in M , and uniformity constant µFi
6 δ2 <

∞ for all i.
(2) The collection {(Mi, xi, Fi)} of compact Finsler n-manifolds (diam(Mi)

< π/
√
c when c > 0) satisfying conditions∫

γi

(max{(n− 1)c−Ric(∇r), 0})p dt 6 C

for any minimal normal geodesic γi in Mi, and uniformity constant µFi
6 δ2 <

∞ for all i.

Proof. We only prove (1), (2) may be verified by the same way. Note that
λ2
Fi
6 µFi

, one has {(Mi, Fi)} ⊂ (Mδ, dδGH). For each (Mi, Fi), note that

diam(Mi) 6 D, one has Mi = Bxi
(D) for any xi ∈ Mi. Since Mi is compact,

there are finite disjoint forward geodesic balls Bx1
(ε), . . . , Bxl

(ε) of radius ε in
Mi. Let Bxl0

(ε) be the forward geodesic ball with the smallest minimal volume.
Then by Theorem 4.3 we have

l 6
volmin(Mi)

volmin(Bxl0
(ε))

=
volmin(Bxl0

(D))

volmin(Bxl0
(ε))

6
Vc,Λ,n(D)

Vc,Λ,n(ε)
· δn,
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here Λ is given by (4.3). Now (1) is easily followed by (1) of Lemma 5.1. �

6. The Mckean type inequalities

In this section we shall study the first eigenvalue on Finsler manifolds and
prove some McKean type theorems under the line integrate curvature bounds.
Let us first recall the definition of the first eigenvalue for non-compact Finsler
manifolds. Let (M,F, dµ) be a Finsler n-manifold with volume form dµ, Ω ⊂
M a domain with compact closure and nonempty boundary ∂Ω. The first
eigenvalue λ1(Ω) of Ω with respect to dµ is defined by (see [4], page 176)

λ1(Ω) = inf
f∈L2

1,0(Ω)\{0}


∫

Ω

(F ∗(df))
2
dµ∫

Ω

f2dµ

 ,

where L2
1,0(Ω) is the completion of C∞0 with respect to the norm

‖ ϕ ‖2Ω=

∫
Ω

ϕ2dµ+

∫
Ω

(F ∗(dϕ))
2
dµ.

If Ω1 ⊂ Ω2 are bounded domains, then λ1(Ω1) > λ1(Ω2) > 0. Thus, if Ω1 ⊂
Ω2 ⊂ · · · ⊂M be bounded domains so that

⋃
Ωi = M , then the following limit

λ1(M) = lim
i→∞

λ1(Ωi) > 0

exists, and it is independent of the choice of {Ωi}.
Now let Bp(R) be the forward geodesic ball of M with radius R centered at

p, and R < ip, where ip denotes the injectivity radius about p. For R > ε > 0,

let Ωε(R) = Bp(R)\Bp(ε). Then r = dF (p, ·) is smooth on Ωε(R), and thus
V = ∇r is a unit geodesic vector field on Ωε(R), and we can consider the
Riemannian metric g̃ = gV on Ωε(R). Since the Legendre transformation
l : TM → T ∗M is norm-preserving, and thus it also preserves the uniformity
constant. Hence, for any f ∈ C∞0 (Ωε(R)),

(F ∗(df))2(x) = g∗ij(x, df)
∂f

∂xi
∂f

∂xj
>

1

µ∗(x)
g∗ij(x, l(V (x)))

∂f

∂xi
∂f

∂xj

=
1

µ(x)
gij(x, V (x))

∂f

∂xi
∂f

∂xj
=

1

µ(x)
‖df‖2g̃(x).(6.1)

Using (6.1), we get, for dµ = dVmin,∫
Ωε(R)

(F ∗(df))
2
dVmin∫

Ωε(R)

f2dVmin

>

∫
Ωε(R)

(F ∗(df))2dVg̃

Θ
n
2

∫
Ωε(R)

f2dVg̃

>
1

Θ1+ n
2

∫
Ωε(R)

‖df‖2g̃dVg̃∫
Ωε(R)

f2dVg̃

,

here

Θ = max
x∈Bp(R)

µ(x).
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As the result, we have for dµ = dVmin,

(6.2) λ1(Ωε(R)) >
1

Θ1+ n
2
λ̃1(Ωε(R)),

where λ̃1(Ωε(R)) is the first eigenvalue of Ωε(R) with respect to g̃. It is not
difficult to see that (6.2) still holds for dµ = dVmax. In other words, (6.2) holds
for dµ = dVext. Now we are able to prove:

Theorem 6.1. Let (M,F ) be a forward complete noncompact and simply con-
nected Finsler n-manifold with nonpositive flag curvature and finite uniformity
constant µF , x ∈M , and c < 0, p > 1.

(1) Suppose that there is C > 0 with [(2p − 1)C]
1

2p−1 <
√
−c such that the

radial flag curvature at x ∈M satisfies∫
γ

(
max{K(∇r)− c, 0}

)p
dt 6 C

for any minimal normal geodesic γ issuing from x, then we have the following
estimation for λ1(M) with respect to dµ = dVext:

λ1(M) >
(n− 1)2

[√
−c− [(2p− 1)C]

1
2p−1

]2
4µ

1+ n
2

F

.

(2) Suppose that there is C > 0 with [(2p − 1)C]
1

2p−1 <
√
−c such that the

radial Ricci curvature at x ∈M satisfies∫
γ

(max{Ric(∇r)− c, 0})p dt 6 C

for any minimal normal geodesic γ issuing from x, then we have the following
estimation for λ1(M) with respect to dµ = dVext:

λ1(M) >

[√
−c− [(2p− 1)C]

1
2p−1

]2
4µ

1+ n
2

F

.

Proof. We only prove (1), (2) may be verified by the same way. Since (M,F ) is a
forward complete noncompact and simply connected Finsler manifold with non-
positive flag curvature, by Cartan-Hadamard theorem r = dF (x, ·) is smooth
on M\{x}. First we recall that V = ∇r is also a unit geodesic vector field on
M with respect to g̃. From the definition of gradient,

dr(X) = gV (V,X) = g̃(V,X) = g̃(∇̃r,X),

namely, ∇r = ∇̃r, here ∇̃r is the gradient of r with respect to g̃. Furthermore,

by (2.3) and (2.4) we see that ∇VXV = ∇̃XV for any X ∈ TM , and thus

H̃(r)(X,Y ) = gV (∇̃XV, Y ) = gV (∇VXV, Y ) = H(r)(X,Y ),
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here H̃ is the Hessian of g̃. Let ∆̃ and d̃iv be the Laplacian and divergence
with respect to g̃, respectively. Then by Theorem 3.4 we get

∆̃r = d̃iv∇̃r = trg̃H̃(r) = trg̃H(r) > (n− 1)
[√
−c− [(2p− 1)C]

1
2p−1

]
.

By applying Lemma 3.7 in [11] to vector field V on Ωε(R) with respect to g̃
and noticing (6.2) we have

λ1(Ωε(R)) >
1

µ
1+ n

2

F

λ̃1(Ωε(R)) >
(n− 1)2

[√
−c− [(2p− 1)C]

1
2p−1

]2
4µ

1+ n
2

F

.

Now letting ε→ 0 and R→∞ we obtain the desired result. �

7. Generalized Myers theorem

The celebrated Myers theorem in global Riemannian geometry says that if
a Riemannian manifold M satisfies Ric(v) > (n − 1)c for all unit vector v
and some c > 0, then M is compact with diam(M) 6 π√

c
. Myers theorem

has also been generalized to Finsler manifolds [1], and recently we establish a
generalized Myers theorem under the line integral curvature bound for Finsler
manifolds [9]. In this last section we shall prove another version of generalized
Myers theorem for Finsler manifolds as follows.

Theorem 7.1. Let (M,F ) be an n-dimensional forward complete Finsler man-
ifold, and c > 0, p > 1. If there is Λ > 0 with Λ < (n − 1)c such that for any
x ∈ M and each minimal normal geodesic γ emanating from x, the Ricci cur-
vature satisfies[

1

L(γ)

∫
γ

[max{(n− 1)c−Ric(γ′(t)), 0}]p dt
] 1

p

6 Λ,

then M is compact with

diam(M) 6
π

√
c− Λ

(n− 1)
√
c

.

Proof. For any fixed x, y ∈ M let γ : [0, L(γ)] → M be the minimal normal
geodesic from x to y. Then by (3.11) we have the following inequality (see [9],
page 836 or [11], page 99):

π > − 1

(n− 1)
√
c

∫
γ

max{(n− 1)a−Ric(γ′(t)), 0}dt+ L(γ)
√
c,

which together with the Hölder inequality yields

π > − 1

(n− 1)
√
c

[∫
γ

[max{(n− 1)a−Ric(γ′(t)), 0}]pdt
] 1

p
[∫

γ

dt

]1− 1
p

+ L(γ)
√
c
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= L(γ)

(
√
c− 1

(n− 1)
√
c

[
1

L(γ)

∫
γ

[max{(n− 1)a−Ric(γ′(t)), 0}]pdt
] 1

p

)

> L(γ)

(√
c− Λ

(n− 1)
√
c

)
.

Consequently,

L(γ) 6
π

√
c− Λ

(n− 1)
√
c

,

and since x, y are arbitrary, we clearly have the desired result. �
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