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Abstract. We present new bounds for the numerical radius of bounded linear operators

and 2 × 2 operator matrices. We apply upper bounds for the numerical radius to the

Frobenius companion matrix of a complex monic polynomial to obtain new estimations

for the zeros of that polynomial. We also show with numerical examples that our new

estimations improve on the existing estimations.

1. Introduction

The purpose of the present article is to present a general method to estimate
the zeros of a monic polynomial. The estimation for the zeros of a polynomial have
important applications in many areas of sciences such as signal processing, control
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theory, communication theory, coding theory and cryptography. To find the ex-
act zeros of a polynomial of higher order is very difficult and there is no standard
method as such. For this reason, the estimation of the disk containing all the zeros
of a polynomial is an important area of research. Over the years many mathe-
maticians have developed various tools to estimate the disk that contains all the
zeros. We use the numerical radius inequalties of the Frobenius companion matrix
associated with a given polynomial to find a disk of smaller radius that contains
all the zeros of the polynomial. This is the time to introduce some notations and
terminologies to be used in this article.
Let H1, H2 be two complex Hilbert spaces with usual inner product 〈., .〉 and
B(H1,H2) denote the set of all bounded linear operators from H1 into H2. If
H1 = H2 = H then we write B(H1,H2) = B(H). For T ∈ B(H), let Re(T ) and
Im(T ) denote the real part of T and the imaginary part of T , respectively, i.e.,
Re(T ) = 1

2 (T + T ∗) and Im(T ) = 1
2i(T − T ∗). Here T ∗ denotes the adjoint of T .

For T ∈ B(H), the operator norm ‖T ‖ of T is defined as :

‖T ‖ = sup {‖Tx‖ : x ∈ H, ‖x‖ = 1} .

For T ∈ B(H), the numerical range W (T ), numerical radius w(T ) and Crawford
number m(T ) of T are defined as:

W (T ) = {〈Tx, x〉 : x ∈ H, ‖x‖ = 1} ,
w(T ) = sup {|µ| : µ ∈ W (T )} ,
m(T ) = inf {|µ| : µ ∈ W (T )} .

It is easy to verify that w(.) is a norm on B(H) and equivalent to the operator norm
‖.‖ satisfying the following inequality

1

2
‖T ‖ ≤ w(T ) ≤ ‖T ‖.

Observe that spectrum σ(T ) of T is contained in the closure of the numerical range
W (T ) of T , so the spectral radius r(T ) of T always satisfies r(T ) ≤ w(T ). Let
us consider a monic polynomial of degree n, p(z) = zn + an−1z

n−1 + an−2z
n−2 +

. . .+ a1z + a0, where the coefficients ai ∈ C for i = 0, 1, . . . , n− 1. The Frobenius
companion matrix C(p), associated with polynomial p(z), is given by

C(p) =




−an−1 −an−2 . . . −a1 −a0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0




n×n

.

It is easy to verify that all the eigenvalues of C(p) are exactly the zeros of the
polynomial p(z). Considering C(p) as a bounded linear operator on Cn, we get
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r(C(p)) ≤ w(C(p)) and so |λ| ≤ w(C(p)), where λ is a zero of p(z). If R is the
radius of a disk with center at the origin that contains all the zeros of p(z) , then
w(C(p)) is one such R. Over the years various mathematicians have estimated ra-
dius R using various technique. Few of them are listed in below.

(1) Abdurakhmanov [1] proved that

|λ| ≤ 1

2


|an−1|+ cos

π

n
+

√√√√√
(
|an−1| − cos

π

n

)2
+



1 +

√√√√
n−2∑

j=0

|aj |2



2

 = RA.

(2) Abu-Omar and Kittaneh [4] proved that

|λ| ≤
√

1

4
(|an−1|2 + α)2 + α+ cos2

π

n+ 1
= RAK ,

where α =
√∑n−1

j=0 |aj |2.
(3) Bhunia et. al. [6] proved that

|λ| ≤ |an−1

n
|+ cos

π

n
+

1

2
[(1 + α)2 + 4α+ 4

√
α(1 + α)]

1

4 = RBBP ,

where

αr =

n∑

k=r

kCr

(
− an−1

n

)k−r
ak, r = 0, 1, . . . , n− 2, an = 1, 0C0 = 1,

α =

n−2∑

i=0

|αi|2.

(4) Cauchy [12] proved that

|λ| ≤ 1 + max{|a0|, |a1|, . . . , |an−1|} = RC .

(5) Carmichael and Mason [12] proved that

|λ| ≤ (1 + |a0|2 + |a1|2 + . . .+ |an−1|2)
1

2 = RCM .

(6) Fujii and Kubo [10] proved that

|λ| ≤ cos
π

n+ 1
+

1

2

[( n−1∑

j=0

|aj|2
) 1

2 + |an−1|
]
= RFK .

(7) Kittaneh [16] proved that

|λ| ≤ 1

2


|an−1|+ 1 +

√√√√√(|an−1| − 1)2 + 4

√√√√
n−2∑

j=0

|aj |2


 = RK1

.
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(8) Kittaneh [16] proved that

|λ| ≤ 1

2


|an−1|+ cos

π

n
+

√√√√
(
|an−1| − cos

π

n

)2
+ (|an−2|+ 1)2 +

n−3∑

j=0

|aj |2

 = RK2

.

(9) Montel [12] proved that

|λ| ≤ max

{
1,

n−1∑

r=o

|ar|
}

= RM .

In this article, we obtain some upper bounds for the numerical radius of bounded
linear operators and operator matrices. Using these bounds and the bounds ob-
tained in [5, 6, 7, 8, 9], we obtain bounds for the radius of the disk with centre at
the origin that contains all the zeros of a complex monic polynomial. Also we show
with numerical examples that these bounds obtained here improve on the existing
bounds.

2. Estimations for the Numerical Radius

In this section, we obtain upper bounds for the numerical radius of bounded
linear operators which will be used to estimate the zeros of a polynomial in the next
section. We need the following numerical radius equality [20].

Lemma 2.1. Let T ∈ B(H) and Hθ = Re(eiθT ), where θ ∈ R. Then, w(T ) =
supθ∈R

‖Hθ‖.

First we obtain the following refinement of [13, Th. 3.6].

Theorem 2.2. Let T ∈ B(H). Then, w2(T ) ≤ w(T 2)+min
{
‖Re(T )‖2, ‖Im(T )‖2

}
.

Proof. Let Hθ = Re(eiθT ), where θ ∈ R. Then

4H2
θ = e2iθT 2 + e−2iθT ∗2 + TT ∗ + T ∗T

⇒ 4H2
θ = (e2iθ − 1)T 2 + (e−2iθ − 1)T ∗2 + T 2 + T ∗2 + TT ∗ + T ∗T

⇒ H2
θ =

1

2
Re
{
(e2iθ − 1)T 2

}
+ (Re(T ))2

⇒ H2
θ = sin θRe

{
ei(θ+

π

2
)T 2
}
+ (Re(T ))2

⇒ ‖Hθ‖2 ≤ ‖Re
{
ei(θ+

π

2
)T 2
}
‖+ ‖Re(T )‖2

≤ w(T 2) + ‖Re(T )‖2, using Lemma 2.1.

Taking supremum over θ ∈ R and then using Lemma 2.1 we get, w2(T ) ≤ w(T 2) +
‖Re(T )‖2. Applying similar argument we can prove that w2(T ) ≤ w(T 2)+‖Im(T )‖2.
This completes the proof of the theorem.
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Remark 2.3. (i) We would like to remark that Theorem 2.2 stronger than the
inequality [13, Th. 3.6], stated as w2(T ) ≤ w(T 2) + 2min

{
‖Re(T )‖2, ‖Im(T )‖2

}
.

(ii) It follows from Theorem 2.2 that if T 2 = 0 then w(T ) ≤ ‖Re(T )‖ and
w(T ) ≤ ‖Im(T )‖. From [5, Th. 3.3], it follows that for any T ∈ B(H),
‖Re(T )‖2 + m2(Im(T )) ≤ w2(T ), ‖Im(T )‖2 + m2(Re(T )) ≤ w2(T ). So, if T 2 = 0
then w(T ) = ‖Re(T )‖ = ‖Im(T )‖ and m(Re(T )) = m(Im(T )) = 0. Also we have
from Theorem 2.2 and [5, Th. 3.3] that for any T ∈ B(H), m(Re(T )) ≤

√
w(T 2)

and m(Im(T )) ≤
√
w(T 2).

Next we obtain an upper bound for the numerical radius of 2 × 2 operator
matrices.

Theorem 2.4. Let T =

(
A B

C D

)
, where A ∈ B(H1), B ∈ B(H2,H1), C ∈

B(H1,H2), D ∈ B(H2). Then,

w(T ) ≤ 1

2

[
w(A) + w(D) +

√
(w(A) − w(D))2 + ‖B‖2 + ‖C‖2 + 2w(CB)

]
.

Proof. Abu-Omar and Kittaneh in [2, Cor. 2] proved that

w(T ) ≤ 1

2

[
w(A) + w(D) +

√
(w(A) − w(D))2 + 4w2(T0)

]
.

where T0 =

(
O B

C O

)
. We proved in [6, Th. 2.5] that

w4

(
O B

C O

)
≤ 1

16
‖S‖2 + 1

4
w2(CB) +

1

8
w(CBS + SCB),

where S = |B|2 + |C∗|2. Our required bound follows from these above two bounds,
using the facts that w(CBS+SCB) ≤ 2w(CB)‖S‖, (see [9, Remark 5]) and ‖S‖ ≤
‖B‖2 + ‖C‖2.

Remark 2.5. Paul and Bag in [18, Th. 2.1, (i)] proved that

w(T ) ≤ 1

2

[
w(A) + w(D) +

√
(w(A) − w(D))2 + (‖B‖+ ‖C‖)2

]
.

Clearly, it is weaker than the inequality obtained in Theorem 2.4.

Next we give an another upper bound for the numerical radius of 2×2 operator
matrices.

Theorem 2.6. Let T =

(
A B

C D

)
, where A ∈ B(H1), B ∈ B(H2,H1), C ∈

B(H1,H2), D ∈ B(H2). Then,

w(T ) ≤ 1

2

[
w(A) + w(D) +

√
(w(A) − w(D))2 + 4α2

1

]
,
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where

α1 =

[
1

8
max

{(
‖B‖2 + ‖C‖2

)2
+ 4w2 (BC) ,

(
‖B‖2 + ‖C‖2

)2
+ 4w2 (CB)

}] 1

4

.

Proof. This inequality follows from the two inequalities proved in [2, Cor. 2] and
[8, Th. 2.6], respectively, stated below:

w(T ) ≤ 1

2

[
w(A) + w(D) +

√
(w(A) − w(D))2 + 4w2(T0)

]
, T0 =

(
O B

C O

)
.

and

w4

(
O B

C O

)
≤ 1

8
max

{
‖BB∗+C∗C‖2+4w2(BC), ‖B∗B+CC∗‖2+4w2(CB)

}
.

Next we obtain some upper bounds for the numerical radius of bounded linear
operators defined on H. We need the Aluthge transform of an operator T . For
T ∈ B(H), the Aluthge transform [14] of T , denoted as T̃ , is defined as T̃ =

|T | 12U |T | 12 , where |T | = (T ∗T )
1

2 and U is the partial isometry associated with the
polar decomposition of T , i.e., T = U |T |. It follows easily from the definition of

T̃ that ‖T̃‖ ≤ ‖T ‖ and r(T̃ ) = r(T ), also w(T̃ ) ≤ w(T ) (see [14]). For definition
and more information about the Aluthge transform we refer the reader to [20] and
references therein.

Theorem 2.7. Let T ∈ B(H). Then, w2(T ) ≤ 1
4‖T ‖‖T 2‖ 1

2 + 1
4‖T 2‖+ 1

2‖T ‖2.

Proof. The proof follows from the observationsw(T̃ 2) ≤ ‖T ‖2, ‖T̃‖ ≤ ‖T 2‖ 1

2 , ‖T ∗T+
TT ∗‖ ≤ ‖T 2‖+ ‖T ‖2. and the inequality [7, Th. 4],

w2(T ) ≤ 1

4
w(T̃ 2) +

1

4
‖T ‖‖T̃‖+ 1

4
‖T ∗T + TT ∗‖.

We end this section with the following inequalities, the proof of which follows
from [7, Th. 2] as well as [3, Cor. 2.6].

Theorem 2.8. Let T ∈ B(H). Then,

(i) w2(T ) ≤ 1

2
‖T ‖‖T 2‖ 1

2 +
1

4
‖T 2‖+ 1

4
‖T ‖2

and

(ii) w2(T ) ≤ 3

4
‖T 2‖+ 1

4
‖T ‖2.
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Proof. The proof of (i) follows from [7, Th. 2], i.e., w2(T ) ≤ 1
2‖T ‖‖T̃‖ + 1

4‖T ∗T +

TT ∗‖, and the inequalities ‖T̃‖ ≤ ‖T 2‖ 1

2 and ‖T ∗T + TT ∗‖ ≤ ‖T 2‖ + ‖T ‖2. The
proof of (i) also follows from [3, Cor. 2.6], i.e., w(T ) ≤ 1

2

√
‖T ‖2 + ‖T 2‖+ 2w(T 2).

The proof of (ii) follows from [3, Cor. 2.6].

3. Estimations for Zeros of a Polynomial

Consider a monic polynomial of degree n, p(z) = zn + an−1z
n−1 + an−2z

n−2 +
. . . + a1z + a0, where the coefficients ai ∈ C for i = 0, 1, . . . , n − 1. Let R denote
radius of a disk with center at the origin that contains all the zeros of p(z). If λ is a
zero of p(z), equivalently, if λ is an eigen value of the Frobenius companion matrix
C(p) (as described in the introduction), then | λ |≤ R. Our goal in this section is to
obtain smaller possible values of R. To do so we need the following two well known
results on the numerical radius equality.

Lemma 3.1. ([11, pp. 8-9]) If Ln =




0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...

0 0 . . . 1 0




n×n

, then w(Ln) =

cos π
n+1 .

Lemma 3.2. ([10]) If xi ∈ C for each i = 1, 2, . . . , n, then

w




x1 x2 . . . xn

0 0 . . . 0
0 . . . 0
...

...
...

0 0 . . . 0




=
1

2


|x1|+

√√√√
n∑

r=1

|xr |2

 .

By using Lemmas 3.1 and 3.2, we obtain some new bounds for the zeros of p(z).
First using Theorem 2.4, we prove the following theorem.

Theorem 3.3. Let λ be a zero of p(z).Then,

|λ| ≤ w(C(p)) ≤ 1

2


|an−1|+ cos

π

n
+

√√√√(|an−1| − cos
π

n
)2 +

n−2∑

r=0

|ar|2 + 1 + α


 = R1,

where α = |an−2|+
√

n−2∑
r=0

|ar|2.
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Proof. Let C(p) =

(
A B

C D

)
, where A = (an−1)1×1, C =




1
0
...
0




n−1×1

,

B = (−an−2 − an−3 . . . − a1 − a0)1×n−1 and D = Ln−1. Then using Lemmas 3.1
and 3.2 in Theorem 2.4 we get,

w(C(p)) ≤ 1

2


|an−1|+ cos

π

n
+

√√√√(|an−1| − cos
π

n
)2 +

n−2∑

r=0

|ar|2 + 1 + α


 ,

where α = |an−2|+
√

n−2∑
r=0

|ar|2. This completes the proof.

Next using Theorem 2.6, we prove the following theorem.

Theorem 3.4. Let λ be a zero of p(z). Then,

|λ| ≤ w(C(p)) ≤ 1

2

[
|an−1|+ cos

π

n
+

√(
|an−1| − cos

π

n

)2
+ 4α2

]
= R2,

where

α =

[
1

8
max

{
(β + 1)2 + 4|an−2|2, (β + 1)2 + δ2

}] 1

4

,

β =

n−2∑

r=0

|ar|2,

δ = |an−2|+

√√√√
n−2∑

r=0

|ar|2.

Proof. We consider C(p) =

(
A B

C D

)
where A,B,C and D are same as in the

proof of Theorem 3.3. Then using Lemmas 3.1 and 3.2 in Theorem 2.6 we have the
desired bound.

In the following example we show with a numerical example that our estimations
in Theorems 3.3 and 3.4 are better than the existing estimations.

Example 3.5. We consider a polynomial p(z) = z5 + 4z4 + z3 + z2 + z + 1.
Then the upper bounds for the zeros of this polynomial p(z) estimated by different
mathematicians are as shown in the following table.
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RFK 5.1020
RK1

4.5615
RAK 4.8131
RA 4.5943

RBBP 7.2809.

But, Theorem 3.3 gives R1 = 4.5365 and Theorem 3.4 gives R2 = 4.5509. Therefore,
for this polynomial p(z), our obtain bounds in Theorems 3.3 and 3.4 are better than
the above mentioned bounds.

We next obtain an estimation of radius R and for that we need the following
numerical radius inequality [9, Cor. 3].

Lemma 3.6. Let T =

(
A B

C D

)
, where A ∈ B(H1), B ∈ B(H2,H1), C ∈

B(H1,H2), D ∈ B(H2). Then,

w(T ) ≤
√

w2(A) +
1

2
‖B‖

(
w(A) +

1

2
‖B‖

)
+

√

w2(D) +
1

2
‖C‖

(
w(D) +

1

2
‖C‖

)
.

Theorem 3.7. Let λ be a zero of p(z). Then,

|λ| ≤ w(C(p)) ≤
√

|an−1|2 +
1

2
α

(
|an−1|+

1

2
α

)
+

√

cos2
π

n
+

1

2

(
cos

π

n
+

1

2

)
= R3,

where α =

√
n−2∑
r=0

|ar|2.

Proof. The proof follows from Lemmas 3.6 and 3.1, and using the similar arguments
as in the proof of Theorem 3.3.

The next example highlights that the above estimation is better than the exist-
ing ones.

Example 3.8. We consider a polynomial p(z) = z5 + z3 + z + 2. Then the upper
bounds for the zeros of this polynomial p(z) estimated by different mathematicians
are as shown in the following table.

RC 3
RM 4
RCM 2.6457

But our bound in Theorem 3.7 gives R3 = 2.3688. Therefore, for this polynomial
p(z), the estimation in Theorem 3.7 is better than the existing estimations men-
tioned above.
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We need the following lemma [9, Cor. 4] to prove the next theorem.

Lemma 3.9. Let T =

(
A B

C D

)
, where A ∈ B(H1), B ∈ B(H2,H1), C ∈

B(H1,H2), D ∈ B(H2). Then,

w(T ) ≤
√
2w2(A) +

1

2
(‖A∗B‖+ ‖B‖2) +

√
2w2(D) +

1

2
(‖D∗C‖+ ‖C‖2).

Theorem 3.10. Let λ be a zero of p(z). Then,

|λ| ≤ w(C(p)) ≤
√
2|an−1|2 +

1

2
(α+ β2) +

√
2 cos2

π

n
+

1

2
= R4,

where α =

√
n−2∑
r=0

|aran−1|2 and β =

√
n−2∑
r=0

|ar|2.

Proof. The proof follows from Lemma 3.9, by using Lemma 3.1 and the similar
arguments as in the proof of Theorem 3.3.

As before we provide an example.

Example 3.11. We consider a polynomial p(z) = z5 + z3 + z +5. Then the upper
bounds for the zeros of this polynomial p(z) estimated by different mathematicians
are as shown in the following table.

RC 6
RM 7
RCM 5.2915

But our bound in Theorem 3.10 gives R4 = 5.0192. Therefore, for this polyno-
mial p(z), the estimation in Theorem 3.10 is better than the existing estimations
mentioned in this example.

We state an upper bound for the numerical radius of 2 × 2 operator matrices
[15, Cor. 3.4] and using it we prove our next theorem.

Lemma 3.12. Let T =

(
A B

C D

)
, where A ∈ B(H1), B ∈ B(H2,H1), C ∈

B(H1,H2), D ∈ B(H2). Then,

w

(
A B

C D

)
≤ 1

2

[
w(A) + w(D) +

√
w2(A) + ‖B‖2 +

√
w2(D) + ‖C‖2

]
.
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Theorem 3.13. Let λ be a zero of p(z). Then,

|λ| ≤ w(C(p)) ≤ 1

2

[
|an−1|+ cos

π

n
+
√
|an−1|2 + α+

√
cos2

π

n
+ 1

]
= R5,

where α =

√
n−2∑
r=0

|ar|2.

Proof. The proof follows from Lemma 3.12, by using Lemma 3.1 and the similar
arguments as in the proof of Theorem 3.3.

Again we give an example to show that the estimation is better than the existing
ones.

Example 3.14. We consider the same polynomial p(z) in Remark 3.8, i.e., p(z) =
z5+z3+z+2. Then the upper bounds for the zeros of this polynomial p(z) estimated
by different mathematicians are as shown in the following table.

RC 3
RM 4
RCM 2.6457
RFK 2.0907
RA 2.1760
RK1

2.1430
RK2

1.9580
RAK 2.1678

But our bound in Theorem 3.13 gives R5 = 1.8301. Therefore for this polynomial
p(z), the estimation in Theorem 3.13 is better than all the existing estimations
mentioned in this example.

Next we give the following two lemmas which can be found in [17, pp. 335-336]
and [15, Th. 2.1], respectively.

Lemma 3.15. ‖C(p)‖ =


 1

2


1 +

n−1∑
r=0

|ar|2 +

√(
1 +

n−1∑
r=0

|ar|2
)2

− 4|a0|2





1

2

.

Lemma 3.16. ‖C2(p)‖ ≤
(
1 +

n−1∑
r=0

(
|ar|2 + |br|2

)) 1

2

, where br = an−1ar − ar−1

for each r = 0, 1, . . . , n− 1 with a−1 = 0.

By using Theorem 2.7, we prove the following theorem.
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Theorem 3.17. Let λ be a zero of p(z). Then,

|λ| ≤ w(C(p)) ≤
(
1

4
β
√
α+

1

4
α+

1

2
β2

) 1

2

= R6,

where

α =

[
1 +

n−1∑

r=0

(
|ar|2 + |br|2

)
] 1

2

,

β =



1

2


1 +

n−1∑

r=0

|ar|2 +

√√√√
(
1 +

n−1∑

r=0

|ar|2
)2

− 4|a0|2







1

2

,

br = an−1ar − ar−1 for each r = 0, 1, . . . , n− 1 and a−1 = 0.

Proof. Taking T = C(p) in Theorem 2.7 and using Lemmas 3.15 and 3.16, we get
the required bound.

Next using Theorem 2.8(i), we prove the following theorem.

Theorem 3.18. Let λ be a zero of p(z). Then,

|λ| ≤ w(C(p)) ≤
(
1

2
β
√
α+

1

4
α+

1

4
β2

) 1

2

= R7,

where α and β are same as in Theorem 3.17.

Proof. Taking T = C(p) in Theorem 2.8(i), and using Lemmas 3.15 and 3.16 we
get the desired bound.

Our last theorem in this section is the following one.

Theorem 3.19. Let λ be a zero of p(z). Then,

|λ| ≤ w(C(p)) ≤
[
3

4
α+

1

4
β2

] 1

2

= R8,

where α and β are same as in Theorem 3.17.

Proof. Taking T = C(p) in Theorem 2.8(ii), and using Lemmas 3.15 and 3.16 we
get the required bound for zeros of p(z).

We illustrate with a numerical example to show that the bounds for the zeros
of a polynomial obtained by us in Theorems 3.17, 3.18 and 3.19 are better than the
existing bounds.
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Example 3.20. We consider a polynomial p(z) = z5 + 2z4 + z3 + z2 + z + 1.
Then the upper bounds for the zeros of this polynomial p(z) estimated by different
mathematicians are as shown in the following table.

RA 3.0183
RCM 3.0000
RC 3.0000
RFK 3.2802
RK1

3.0000
RK2

2.8552
RAK 3.0670

But for the polynomial p(z) = z5 + 2z4 + z3 + z2 + z + 1, we have R6 = 2.7129,
R7 = 2.6086 and R8 = 2.4437. This shows that for this example, our bounds
obtained in Theorems 3.17, 3.18 and 3.19 are better than all the estimations men-
tioned above.
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