• Title/Summary/Keyword: n+-ring

Search Result 1,272, Processing Time 0.03 seconds

RINGS WITH REFLEXIVE IDEALS

  • Han, Juncheol;Park, Sangwon
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.305-316
    • /
    • 2018
  • Let R be a ring with identity. A right ideal ideal I of a ring R is called ref lexive (resp. completely ref lexive) if $aRb{\subseteq}I$ implies that $bRa{\subseteq}I$ (resp. if $ab{\subseteq}I$ implies that $ba{\subseteq}I$) for any $a,\;b{\in}R$. R is called ref lexive (resp. completely ref lexive) if the zero ideal of R is a reflexive ideal (resp. a completely reflexive ideal). Let K(R) (called the ref lexive radical of R) be the intersection of all reflexive ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an reflexive ideal of a ring are obtained; (2) reflexive (resp. completely reflexive) property is Morita invariant; (3) For any ring R, we have $K(M_n(R))=M_n(K(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a ring R, we have $K(R)[x]{\subseteq}K(R[x])$; in particular, if R is quasi-Armendaritz, then R is reflexive if and only if R[x] is reflexive.

GENERALIZED CAYLEY GRAPH OF UPPER TRIANGULAR MATRIX RINGS

  • Afkhami, Mojgan;Hashemifar, Seyed Hosein;Khashyarmanesh, Kazem
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1017-1031
    • /
    • 2016
  • Let R be a commutative ring with the non-zero identity and n be a natural number. ${\Gamma}^n_R$ is a simple graph with $R^n{\setminus}\{0\}$ as the vertex set and two distinct vertices X and Y in $R^n$ are adjacent if and only if there exists an $n{\times}n$ lower triangular matrix A over R whose entries on the main diagonal are non-zero such that $AX^t=Y^t$ or $AY^t=X^t$, where, for a matrix B, $B^t$ is the matrix transpose of B. ${\Gamma}^n_R$ is a generalization of Cayley graph. Let $T_n(R)$ denote the $n{\times}n$ upper triangular matrix ring over R. In this paper, for an arbitrary ring R, we investigate the properties of the graph ${\Gamma}^n_{T_n(R)}$.

NOTES ON SYMMETRIC SKEW n-DERIVATION IN RINGS

  • Koc, Emine;Rehman, Nadeem ur
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1113-1121
    • /
    • 2018
  • Let R be a prime ring (or semiprime ring) with center Z(R), I a nonzero ideal of R, T an automorphism of $R,S:R^n{\rightarrow}R$ be a symmetric skew n-derivation associated with the automorphism T and ${\Delta}$ is the trace of S. In this paper, we shall prove that S($x_1,{\ldots},x_n$) = 0 for all $x_1,{\ldots},x_n{\in}R$ if any one of the following holds: i) ${\Delta}(x)=0$, ii) [${\Delta}(x),T(x)]=0$ for all $x{\in}I$. Moreover, we prove that if $[{\Delta}(x),T(x)]{\in}Z(R)$ for all $x{\in}I$, then R is a commutative ring.

AN ASSOCIATED SEQUENCE OF IDEALS OF AN INCREASING SEQUENCE OF RINGS

  • Ali, Benhissi;Abdelamir, Dabbabi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1349-1357
    • /
    • 2022
  • Let 𝒜 = (An)n≥0 be an increasing sequence of rings. We say that 𝓘 = (In)n≥0 is an associated sequence of ideals of 𝒜 if I0 = A0 and for each n ≥ 1, In is an ideal of An contained in In+1. We define the polynomial ring and the power series ring as follows: $I[X]\, = \,\{\, f \,=\, {\sum}_{i=0}^{n}a_iX^i\,{\in}\,A[X]\,:\,n\,{\in}\,\mathbb{N},\,a_i\,{\in}\,I_i \,\}$ and $I[[X]]\, = \,\{\, f \,=\, {\sum}_{i=0}^{+{\infty}}a_iX^i\,{\in}\,A[[X]]\,:\,a_i\,{\in}\,I_i \,\}$. In this paper we study the Noetherian and the SFT properties of these rings and their consequences.

WEAK α-SKEW ARMENDARIZ RINGS

  • Zhang, Cuiping;Chen, Jianlong
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.455-466
    • /
    • 2010
  • For an endomorphism $\alpha$ of a ring R, we introduce the weak $\alpha$-skew Armendariz rings which are a generalization of the $\alpha$-skew Armendariz rings and the weak Armendariz rings, and investigate their properties. Moreover, we prove that a ring R is weak $\alpha$-skew Armendariz if and only if for any n, the $n\;{\times}\;n$ upper triangular matrix ring $T_n(R)$ is weak $\bar{\alpha}$-skew Armendariz, where $\bar{\alpha}\;:\;T_n(R)\;{\rightarrow}\;T_n(R)$ is an extension of $\alpha$ If R is reversible and $\alpha$ satisfies the condition that ab = 0 implies $a{\alpha}(b)=0$ for any a, b $\in$ R, then the ring R[x]/($x^n$) is weak $\bar{\alpha}$-skew Armendariz, where ($x^n$) is an ideal generated by $x^n$, n is a positive integer and $\bar{\alpha}\;:\;R[x]/(x^n)\;{\rightarrow}\;R[x]/(x^n)$ is an extension of $\alpha$. If $\alpha$ also satisfies the condition that ${\alpha}^t\;=\;1$ for some positive integer t, the ring R[x] (resp, R[x; $\alpha$) is weak $\bar{\alpha}$-skew (resp, weak) Armendariz, where $\bar{\alpha}\;:\;R[x]\;{\rightarrow}\;R[x]$ is an extension of $\alpha$.

Ring Embedding in (n.K) Star Graphs with Faulty Nodes (결함 노드를 갖는 (n,K)-스타 그래프에서의 링 임베딩)

  • Chang, Jung-Hwan;Kim, Jin-Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.1
    • /
    • pp.22-34
    • /
    • 2002
  • In this paper, we consider ring embeding problem in faulty (n,k) star graphs which is recently proposed as an alternative interconnection network topology, By effectively utilizing such strategies as series of dimension expansions and even distribution of faulty nodes into sub-stars in graph itself. we prove that it is possible to construct a maximal fault-free ring excluding only faulty nodes when the number of faults is no more than n-3 and $n-k{\geq}2$, and also propose an algorithm which can embed the corresponding ring in (n.k)-star graphs This results will be applied into the multicasting applications that the underlying cycle properties on the multi-computer system.

A Faster Algorithm for the Ring Loading problem with Demand Splitting (분할 루팅이 허용되는 링의 용량결정문제에 대한 개선된 해법)

  • 명영수;김후곤
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.4
    • /
    • pp.99-108
    • /
    • 2001
  • In the ring loading problem with demand splitting, traffic demands are given for each pall of nodes in an undirected ring network and a flow is routed in either of the two directions, clockwise and counter-clockwise. The load of a link is the sum of the flows routed through the link and the objective of the problem is to minimize the maximum load on the ring. The fastest a1gorithm to date is Myung, Kim and Tcha's a1gorithm that runs in Ο(n|K|) time where n is the number of nodes and K is the index set of the origin-destination pairs of nodes having flow traffic demands. Here we develop an a1gorithm for the ring loading problem with demand splitting that improves the rerouting step of Myung, Kim and Tcha's a1gorithm arid runs in Ο(min{n|K|, n$^2$}) time.

  • PDF

ON NI AND QUASI-NI RINGS

  • Kim, Dong Hwa;Lee, Seung Ick;Lee, Yang;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.307-317
    • /
    • 2016
  • Let R be a ring. It is well-known that R is NI if and only if ${\sum}^n_{i=0}Ra_i$ is a nil ideal of R whenever a polynomial ${\sum}^n_{i=0}a_ix^i$ is nilpotent, where x is an indeterminate over R. We consider a condition which is similar to the preceding one: ${\sum}^n_{i=0}Ra_iR$ contains a nonzero nil ideal of R whenever ${\sum}^n_{i=0}a_ix^i$ over R is nilpotent. A ring will be said to be quasi-NI if it satises this condition. The structure of quasi-NI rings is observed, and various examples are given to situations which raised naturally in the process.

REMARKS ON A GOLDBACH PROPERTY

  • Jang, Sun Ju
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.403-407
    • /
    • 2011
  • In this paper, we study Noetherian Boolean rings. We show that if R is a Noetherian Boolean ring, then R is finite and $R{\simeq}(\mathbb{Z}_2)^n$ for some integer $n{\geq}1$. If R is a Noetherian ring, then R/J is a Noetherian Boolean ring, where J is the intersection of all ideals I of R with |R/I| = 2. Thus R/J is finite, and hence the set of ideals I of R with |R/I| = 2 is finite. We also give a short proof of Hayes's result : For every polynomial $f(x){\in}\mathbb{Z}[x]$ of degree $n{\geq}1$, there are irreducible polynomials $g(x)$ and $h(x)$, each of degree $n$, such that $g(x)+h(x)=f(x)$.