DOI QR코드

DOI QR Code

RINGS WITH REFLEXIVE IDEALS

  • Han, Juncheol (Department of Mathematics Education, Pusan National University) ;
  • Park, Sangwon (Department of Mathematics, Dong-A University)
  • Received : 2017.08.14
  • Accepted : 2017.09.19
  • Published : 2018.05.31

Abstract

Let R be a ring with identity. A right ideal ideal I of a ring R is called ref lexive (resp. completely ref lexive) if $aRb{\subseteq}I$ implies that $bRa{\subseteq}I$ (resp. if $ab{\subseteq}I$ implies that $ba{\subseteq}I$) for any $a,\;b{\in}R$. R is called ref lexive (resp. completely ref lexive) if the zero ideal of R is a reflexive ideal (resp. a completely reflexive ideal). Let K(R) (called the ref lexive radical of R) be the intersection of all reflexive ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an reflexive ideal of a ring are obtained; (2) reflexive (resp. completely reflexive) property is Morita invariant; (3) For any ring R, we have $K(M_n(R))=M_n(K(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a ring R, we have $K(R)[x]{\subseteq}K(R[x])$; in particular, if R is quasi-Armendaritz, then R is reflexive if and only if R[x] is reflexive.

Keywords

Acknowledgement

Supported by : Dong-A University

References

  1. V. Camillo, T. Kwak, Y. Lee, Ideal-symmetric and semiprime rings, Comm. Algebra 41 (2013), 4504-4519. https://doi.org/10.1080/00927872.2012.705402
  2. P. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), 641-648. https://doi.org/10.1112/S0024609399006116
  3. Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra, 168 (2002), 45-52. https://doi.org/10.1016/S0022-4049(01)00053-6
  4. T. Kwak, Y. Lee, Reflexive property of rings, Comm. Algebra 40 (2012), 1576-1594. https://doi.org/10.1080/00927872.2011.554474
  5. J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971) 359-368. https://doi.org/10.4153/CMB-1971-065-1
  6. G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra, 174 (2002),311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
  7. G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), 1709-1724. https://doi.org/10.1080/00927878108822678
  8. L. Motais de Narbonne, Anneaus semi-commutatifs et unis riels anneaus dont les ide aus principaus sont idempotents, In: Procedings of the 106th National Cogress of Learned Societies (Perpignan, 1981), Paris: Bib. Nat., 71-73.