East Asian Math. J.
Vol. 34 (2018), No. 3, pp. 305-316
http://dx.doi.org/10.7858/eamj.2018.022

RINGS WITH REFLEXIVE IDEALS

Juncheol Han and Sangwon Park*

Abstract

Let R be a ring with identity. A right ideal ideal I of a ring R is called reflexive (resp. completely reflexive) if $a R b \subseteq I$ implies that $b R a \subseteq I$ (resp. if $a b \subseteq I$ implies that $b a \subseteq I$) for any $a, b \in R$. R is called reflexive (resp. completely reflexive) if the zero ideal of R is a reflexive ideal (resp. a completely reflexive ideal). Let $K(R)$ (called the reflexive radical of R) be the intersection of all reflexive ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an reflexive ideal of a ring are obtained; (2) reflexive (resp. completely reflexive) property is Morita invariant; (3) For any ring R, we have $K\left(M_{n}(R)\right)=M_{n}(K(R))$ where $M_{n}(R)$ is the ring of all n by n matrices over R; (4) For a ring R, we have $K(R)[x] \subseteq K(R[x])$; in particular, if R is quasi-Armendaritz, then R is reflexive if and only if $R[x]$ is reflexive.

1. Introduction and basic definitions

Throughout this paper, all rings are associative with identity unless otherwise specified. Let R be a ring. Let $J(R)$ and $P(R)$ denote the Jacobson radical and the prime radical of R respectively. Denote the n by n full (resp. upper triangular) matrix ring over R by $M_{n}(R)$ (resp. $U_{n}(R)$). $\mathbb{Z}\left(\mathbb{Z}_{n}\right)$ denotes the ring of integers (modulo n). $R[x]$ denotes the polynomial ring with an indeterminate x over R.

Mason [7] called a right ideal N of a ring R reflexive if $a R b \subseteq N$ implies $b R a \subseteq N$ for $a, b \in R$, and assign the term completely reflexive to those N for which $a b \in N$ implies $b a \in N$. If the zero ideal is reflexive (resp. completely reflexive), then R is usually called reflexive (resp. completely reflexive); while a completely reflexive ring is called reversible by Cohn [2] (also refer [6]).

It is obvious that both any prime ideal and semiprime ideal of a ring R is reflexive. However, the converse need not be true by the following examples:

[^0]Example 1. Let \mathbb{Z} be the ring of integers. Then for all non-prime integers n, $n \mathbb{Z}$ are clearly reflexive, but not semiprime ideals of \mathbb{Z}.

Example 2. Let \mathbb{H} be the Hamilton quaternion of real numbers. Consider a ring

$$
R=\left\{\left(\begin{array}{ccc}
a & b & c \\
0 & a & b \\
0 & 0 & a
\end{array}\right): a, b, c \in \mathbb{H}\right\}
$$

Then R is a noncommutative local ring with $J^{2} \neq 0=J^{3}$. Note that $\left\{R, J, J^{2}, 0\right\}$ is the set of all ideals of R, and so all ideals of R are reflexive. But 0 and J^{2} are not semiprime ideals of R.

In [7], it was shown that if $1 \in R$, then N is a reflexive right ideal iff whenever A, B are right ideals with $A B \subseteq N$, then $B A \subseteq N$. In section 2 , we will show that a right ideal N of a ring R is reflexive iff $A B \subseteq N$ implies $B A \subseteq N$ for any right (left) ideals A, B in R iff $A R B \subseteq N$ implies that $B R A \subseteq N$ for any nonempty subsets A, B of R. Narbonne [8] called a ring R semicommutative if $a b=0$ implies $a R b=0$ for $a, b \in R$. We call a right ideal N of a $\operatorname{ring} R$ semicommutative if $a b \in N$ implies $a R b \subseteq N$ for $a, b \in R$. It is shown that any completely reflexive ideal of a ring is reflexive (resp. semicommutative).

It was shown in [4, Proposition 2.2] that a ring R is reflexive and semicommutative iff R is reversible (equivalently, completely reflexive). In section 2 , we will show that an ideal N of a ring R is reflexive and semicommutative iff N is completely reflexive. We will also show that (1) the reflexive (resp. completely reflexive) property is Morita invariant by obtaining that an ideal N is reflexive (resp. completely reflexive) iff R / N is reflexive (resp. completely reflexive) ring; (2) for given ideals N, I of a ring R with $\{a \in R \mid a I \subseteq N\}=N$, if N is reflexive in R, then $N \cap I$ is a reflexive ideal of I (as a ring).

We call the intersection of all reflexive ideals of a ring R the reflexive radical of R and denote it by $K(R)$. It is evident that $K(R)$ is the smallest reflexive ideal of R. If R has no proper reflexive ideals, then $K(R)=R$. It is clear that $K(R) \subseteq P(R) \subseteq J(R)$ since every prime ideal of R is reflexive and every maximal ideal is prime. In section 3, we will show that (1) if I is an ideal of a ring R such that $I \subseteq K(R)$, then $K(R / I)=K(R) / I ;(2) K(R)$ is the smallest ideal of R among all ideals J of R satisfying $K(R / J)=0$; (3) $K\left(M_{n}(R)\right)=$ $M_{n}(K(R)) ;(4) K(R)[x] \subseteq K(R[x])$.

2. ideal-reversible ideals of rings

Proposition 2.1. Let N be a right ideal N of a ring R. Then N is reflexive if and only if $I J \subseteq N$ implies $J I \subseteq N$ for any right ideals I, J of R.

Proof. Refer [7, Proposition 2.3].

Corollary 2.2. Any reflexive right ideal of a ring is two-sided ideal.
Proof. Let N be a reflexive right ideal of a ring R. Since N is a right ideal of $R, N R \subseteq N$ for two right ideals N, R of R. Since N is reflexive, $R N \subseteq N$ by Proposition 2.1, and so N is a two-sided ideal of R.

Proposition 2.3. For a right ideal N of a ring R, the following are equivalent:
(1) N is reflexive;
(2) $I J \subseteq N$ implies $J I \subseteq N$ for any right ideals I, J of R;
(3) $I J \subseteq N$ implies $J I \subseteq N$ for any ideals I, J of R;
(4) $A R B \subseteq N$ implies $B R A \subseteq N$ for any nonempty subsets A, B of R.

Proof. (1) $\Leftrightarrow(2)$ It follows from Proposition 2.1.
$(4) \Rightarrow(1)$ and $(4) \Rightarrow(2) \Rightarrow(3)$ are clear.
(1) \Rightarrow (4) Suppose that N is reflexive. Let A, B be two nonempty subsets of R with $A R B \subseteq N$. Then $a R b \subseteq N$ for any $a \in A$ and $b \in B$, and so $b R a \subseteq N$ by assumption. Thus $B R A=\sum_{a \in A, b \in B} b R a \subseteq N$.
$(3) \Rightarrow(2)$ Suppose that (3) holds. Let I, J be two right ideals of R with $I J \subseteq N$. Since N is two-sided ideal of R by Corollary 2.2, $(R I)(R J) \subseteq(R I) J \subseteq$ $R N \subseteq N$ for some ideals $R I, R J$ of R, and then $J I \subseteq(R J)(R I) \subseteq N$ by assumption.

Corollary 2.4. For a ring R, the following are equivalent:
(1) R is reflexive;
(2) $I J=0$ implies $J I=0$ for any right ideals I, J of R;
(3) $I J=0$ implies $J I=0$ for any ideals I, J of R;
(4) $A R B=0$ implies $B R A=0$ for any nonempty subsets A, B of R.

Proof. It follows form the Proposition 2.3.
Proposition 2.5. Let N be a right ideal of a ring R. Then we have the following:
(1) If N is completely reflexive, then N is reflexive;
(2) If N is completely reflexive, then N is semicommutative.

Proof. (1) Suppose that $A B \subseteq N$ for any right ideals A, B in R, and let $\alpha \in B A$ be arbitrary. Then $\alpha=\sum_{i=1}^{n} b_{i} a_{i}$ where $a_{i} \in A, b_{i} \in B$. Since each $a_{i} b_{i} \in A B \subseteq$ N and N is completely reflexive, $b_{i} a_{i} \in N$, yielding that $\alpha \in N$, and so N is reflexive.
(2) Let $a b \in N$ for $a, b \in R$. Since N is a right ideal of $R, a(b r) \in N$ for all $r \in R$, and so $(b r) a \in N$ because N is completely reflexive. Thus $b R a \subseteq N$, and so $(b R)(a R) \subseteq N$. Since N is reflexive by (1), we have that $a R b \subseteq(a R)(b R) \subseteq N$. Therefore, N is semicommutative.

Note that the converses of Proposition 2.5 do not hold by the following examples:

Example 3. Let \mathbb{Z}_{4} be the rings of integers modulo 4 and $R=M a t_{2}\left(\mathbb{Z}_{4}\right)$. Let $N=\operatorname{Mat}_{2}\left(2 \mathbb{Z}_{4}\right)$ of R be an ideal of R. Note that N is not completely reflexive because $p q \in N$, but $q p \notin N$ for some $p=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right), q=\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right) \in R$. Next, we will show that N is reflexive. Since all the two-sided ideals of R are $0, N$ and R, it is easy to show that N is reflexive by Proposition 2.3.

Example 4. By [4, Example 2.3. (1)], there exists a semicommutative ring R but not reflexive. Hence we can take a semicommutative ring R_{1} which is not completely reflexive. Consider $R=R_{1} \times R_{2}$ for some $\operatorname{ring} R_{2}$, and let $N=\{0\} \times R_{2}$ be an ideal of R. Note that R / N is isomorphic to R_{1}. Since R_{1} is semicommutative, R / N is semicommutative, and so N is semicommutative by the below Theorem 2.11. On the other hand, since R_{1} is not completely reflexive, R / N is not completely reflexive, and then N is not completely reflexive by the below Corollary 2.12.

Corollary 2.6. For a ring R we have the following:
(1) If R is completely reflexive, then R is reflexive;
(2) If R is completely reflexive, then R is semicommutative.

Proof. It follows from Proposition 2.5.
Corollary 2.7. Any completely reflexive right ideal of a ring is two-sided ideal. Proof. It follows from Corollary 2.2 and Proposition 2.5.

Proposition 2.8. Let N be a right ideal of a ring R. Then N is both reflexive and semicommutative if and only if N is completely reflexive.

Proof. Suppose that N is both reflexive and semicommutative. Let $a b \in N$ for any $a, b \in R$. Since N is semicommutative, $a R b \subseteq N$. Since N is reflexive, $b a \in b R a \subseteq N$, and so N is completely reflexive. The converse follows from Proposition 2.5.

Corollary 2.9. A ring R is both reflexive and semicommutative if and only if R is completely reflexive.

Proof. It follows from Proposition 2.8.
Theorem 2.10. N is a reflexive ideal of a ring R if and only if R / N is a reflexive ring.

Proof. Suppose that N is a reflexive ideal of R. Let I, J be ideals of R / N such that $I J \subseteq N$, a zero of R / N. Then there exists ideals I_{0}, J_{0} of R such that $I_{0}, J_{0} \supseteq N$ and $I=I_{0} / N, J=J_{0} / N$. Since $I J=\left(I_{0} / N\right)\left(J_{0} / N\right)=$ $\left(I_{0} J_{0}\right) / N \subseteq N, I_{0} J_{0} \subseteq N$. Since N is reflexive, $J_{0} I_{0} \subseteq N$ by Proposition 2.3. Thus $J I=\left(J_{0} I_{0}\right) / N=N$, which yields that R / N is a reflexive ring.

Suppose that R / N is a reflexive ring. Let A, B be ideals of N such that $A B \subseteq N$. Thus $A B+N=N$. Note that $(A+N)(B+N) \subseteq A B+N=N$,
and so $((A+N) / N)((B+N) / N)=(A+N)(B+N) / N=N$. Since R / N is a reflexive ring, $((B+N) / N)((A+N) / N)=(B+N)(A+N) / N)=N$, yielding that $(B+N)(A+N) \subseteq N$, and so $B A \subseteq(B+N)(A+N) \subseteq N$, which means that N is a reflexive ideal of R.

Theorem 2.11. N is a semicommutative ideal of a ring R if and only if R / N is a semicommutative ring.
Proof. Let $\bar{R}=R / N$. Suppose that N is a semicommutative ideal of R. Let $\bar{a} \bar{b}=\overline{0}(=N)$, the zero of R / N, for $\bar{a}=a+N, \bar{b}=b+N \in R / N$. Let $\bar{r}=$ $r+N \in R / N$ be arbitrary. Since N is semicommutative and $a b \in N$, arb $\in N$, and so $\overline{a r b}=(\bar{a})(\bar{r})(\bar{b})=\overline{0}$, i.e., $\bar{a} \overline{R b}=\overline{0}$. Thus \bar{R} is a semicommutative ring.

Suppose that \bar{R} is a semicommutative ring. Let $a b \in N$ for $a, b \in R$ and $r \in R$ be arbitrary. Then $\bar{a} \bar{b}=\overline{0}$. Since \bar{R} is semicommutative, $(\bar{a})(\bar{r})(\bar{b})=\overline{0}$, and so $a r b \in N$, i.e., $a R b \subseteq N$. Thus N is a semicommutative ideal of R.

Corollary 2.12. For an ideal N of a ring R, N completely reflexive if and only if R / N is a completely reflexive ring.
Proof. It follows from Proposition 2.5, Theorem 2.10 and Theorem 2.11.
Theorem 2.13. Let N be an ideal of a ring R. Then we have the following:
(1) If N is reflexive in R, then so is eNe in eRe for each $e^{2}=e \in R$.
(2) N is reflexive in R if and only if $M_{n}(N)$ is reflexive in $M_{n}(R)$ for all $n \geq 1$.
Proof. (1) Suppose that N is reflexive in R. Let $a, b \in e R e$ such that $a(e R e) b \subseteq$ $e N e$. Since $a(e R e) b \subseteq e N e \subseteq N$ and N is reflexive, we have that $b(e R e) a \subseteq N$, and clearly $b(e R e) a \subseteq e N e$, and so $e N e$ is reflexive in $e R e$.
(2) Suppose that N is reflexive in R. Let A, B be ideals of $M_{n}(R)$ such that $A B \subseteq M_{n}(N)$. Note that there exist ideals I, J such that $A=M_{n}(I), B=$ $M_{n}(J)$. Note that $A B=M_{n}(I) M_{n}(J)=M_{n}(I J)$ and then $I J \subseteq N$. Since N is reflexive, $J I \subseteq N$, and so $B A=M_{n}(J) M_{n}(I)=M_{n}(J I) \subseteq M_{n}(N)$. Thus $M_{n}(N)$ is reflexive in $M_{n}(R)$.

Conversely, if $M_{n}(N)$ is reflexive in $M_{n}(R)$, then $e_{11} M_{n}(N) e_{11}$ is reflexive in $e_{11} M_{n}(R) e_{11}$ by (1) where e_{11} is the matrix in $M_{n}(R)$ with (1,1)-entry 1 and elsewhere 0 . Since $N \cong e_{11} M_{n}(N) e_{11}$ and $R \cong e_{11} M_{n}(R) e_{11}, N$ is reflexive in R.

Corollary 2.14. Let R be a ring. Then we have the following:
(1) If R is reflexive, then so is eRe for each $e^{2}=e \in R$.
(2) R is reflexive if and only if $M_{n}(R)$ is reflexive for all $n \geq 1$.

Proof. It follows from Theorem 2.13.
Remark 1. Let N be an ideal of a ring R. By the similar argument given in the proof of Theorem 2.13, we have that (1) if N is a completely reflexive ideal of R, then so is $e N e$ in $e R e$ for each $e^{2}=e \in R$; (2) N is completely reflexive in R if and only if $M_{n}(N)$ is completely reflexive in $M_{n}(R)$ for all $n \geq 1$.

Corollary 2.15. Let N be a reflexive ideal of a ring R. Then $\bar{e} \bar{R} \bar{e}$ is reflexive for an idempotent $\bar{e} \in \bar{R}$ where $\bar{e}=e+N$ and $\bar{R}=R / N$.
Proof. It follows from Theorem 2.10 and Corollary 2.14.
Proposition 2.16. If N is a semicommutative ideal of a ring R, then so is $e N e$ in eRe for each $e^{2}=e \in R$.
Proof. Let $a, b \in e R e$ such that $a b \subseteq e N e$. Since N is semicommutative, $a R b \in$ N, and then $a R b=e(a R b) e \subseteq e N e$, yielding that $e N e$ is semicommutative.

Even though the reflexive (resp. completely reflexive) property of any ideal of a ring is Morita invariant by Theorem 2.13 (resp. Remark 1), the semicommutative property of any ideal of a ring does not satisfy Morita invariant property by the following example:
Example 5. Let \mathbb{Z}_{4} be the rings of integers modulo 4 and $R=\operatorname{Mat}_{2}\left(\mathbb{Z}_{4}\right)$. Then clearly, $2 \mathbb{Z}_{4}$ is a semicommutative ideal of \mathbb{Z}_{4}. Observe that the ideal $N=\operatorname{Mat}_{2}\left(2 \mathbb{Z}_{4}\right)$ of R is not semicommutative. Indeed, take $a=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right), b=$ $\left(\begin{array}{ll}1 & 3 \\ 1 & 3\end{array}\right) \in R$. Then $a b=\left(\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right) \in N$, but $\operatorname{arb}=\left(\begin{array}{ll}1 & 3 \\ 2 & 3\end{array}\right) \notin N$ for some $r=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right) \in R$.
Proposition 2.17. Let I be a reflexive right ideal of a ring R. If I is semiprime (as a ring without identity), then R is a reflexive ring.
Proof. Since I is reflexive, I is two-sided ideal of R by Corollary 2.2, and then R / I is a reflexive ring by Theorem 2.10. Suppose that $a R b=0$ for $a, b \in R$. Then $\bar{a} \overline{R b}=\overline{0}=I$ where $\bar{R}=R / I, \bar{a}=a+I, \bar{b}=b+I \in \bar{R}$. Since \bar{R} is a reflexive ring, $\bar{b} \bar{R} \bar{a}=\overline{0}$, and so $b R a \subseteq I$. Note that $(b R a)^{2}=(b R a)(b R a)=0$ because $a b=0$, yielding that $b R a=0$ because $b R a \subseteq I$ and I is semiprime, and so R is a reflexive ring.

Note that a subring of a reflexive ring could not be reflexive by the following example:
Example 6. Let R be a reflexive ring and consider $U_{2}(R)(2 \times 2$ upper triangular matrix ring over R), which is a subring of $\operatorname{Mat}_{2}(R)$. By Corollary 2.14, $\operatorname{Mat}_{2}(R)$ is a reflexive ring. Let $A=\left(\begin{array}{cc}R & R \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}0 & R \\ 0 & R\end{array}\right)$ be two ideals of $U_{2}(R)$. Since $A B \neq 0=B A, U_{2}(R)$ is not reflexive.

Now we raise a question:
Question 1. If N is a reflexive ideal of a ring R, then is $N \cap I$ a reflexive ideal of I (as a ring) for any ideal I of R ?

The answer is negative by the following example:

Example 7. Let $R=\left(\begin{array}{ccc}\mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Q} & \mathbb{Q} \\ 0 & 0 & \mathbb{Z}\end{array}\right)$ be a ring and $R_{11}=\left(\begin{array}{cc}\mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Z}\end{array}\right)$ be the minor matrix of R obtained by crossing out first row and first column of R. Then all the nonzero ideals of R_{11} are obtained as follows:

$$
P=\left(\begin{array}{cc}
\mathbb{Q} & \mathbb{Q} \\
0 & 0
\end{array}\right), J=\left(\begin{array}{cc}
0 & \mathbb{Q} \\
0 & 0
\end{array}\right), K_{n}=\left(\begin{array}{cc}
0 & \mathbb{Q} \\
0 & n \mathbb{Z}
\end{array}\right) \text { and } T_{n}=\left(\begin{array}{cc}
\mathbb{Q} & \mathbb{Q} \\
0 & n \mathbb{Z}
\end{array}\right) \text { for all }
$$

positive integers n.
By the simple computation, we have the following:

$$
\begin{gathered}
P J=P K_{n}=J K_{n}=J T_{n}=T_{n} J=J-(1), \\
J P=K_{n} P=K_{n} J=0-(2), \\
P T_{n}=T_{n} P=P-(3), \\
K_{m} K_{n}=K_{m} T_{n}=T_{m} K_{n}=K_{m n}, \\
T_{m} T_{n}=T_{n} T_{m}=T_{m n}
\end{gathered}
$$

for all positive integers m, n. We observe that all the nonzero ideals of R_{11} are reflexive by the above equalities, and the smallest reflexive ideal of R_{11} is J.

Next, consider an ideal $N=\left(\begin{array}{ccc}0 & 0 & \mathbb{Q} \\ 0 & 0 & \mathbb{Q} \\ 0 & 0 & 0\end{array}\right)$ of R. Then it is easy to check that N is a reflexive ideal of R because $\left(\begin{array}{ll}0 & \mathbb{Q} \\ 0 & 0\end{array}\right)$ is a reflexive ideal of R_{11}. Let $N_{0}=N \cap I=\left(\begin{array}{lll}0 & 0 & \mathbb{Q} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ where $I=\left(\begin{array}{ccc}\mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Observe that N_{0} is not a reflexive ideal of R. Indeed, taking two ideals
$A=\left(\begin{array}{lll}0 & \mathbb{Q} & \mathbb{Q} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), B=I$ of I, we have that $A B=0$ but $B A=A \nsubseteq N_{0}$, yielding that N_{0} is not a reflexive ideal of I (as a ring).

Let I be a subset of a ring R and N be an ideal of R. The set $\{a \in R \mid a I \subseteq N\}$ is a left ideal of R, which is actually an ideal if I is a left ideal. The set $\{a \in R \mid a I \subseteq N\}$ is called the left annihilator of I in N and is denoted $a n n_{\ell}(I ; N)$. Similarly, the set

$$
a n n_{r}(I ; N)=\{a \in R \mid I a \subseteq N\}
$$

is an ideal of R if I is a right ideal. The set $a n n_{r}(I ; N)$ is called the right annihilator of I in N. It is evident that $N \subseteq a n n_{\ell}(I ; N) \cap a n n_{r}(I ; N)$. When $a n n_{\ell}(I ; N)=a n n_{r}(I ; N)$, it is denoted $\operatorname{ann}(I ; N)$, and called annihilator of I in N. In particular, if $N=0$, then $a n n_{\ell}(I ; 0)\left(\right.$ resp. $\left.a n n_{r}(I ; 0)\right)$ is called left
annihilator of I (resp. right annihilator of I), and is simply denoted ann $n_{\ell}(I)$ $\left(\right.$ resp. $\left.a n n_{r}(I)\right)$. When $a n n_{\ell}(I)=a n n_{r}(I)$, it is denoted $\operatorname{ann}(I)$.

Lemma 2.18. Let N, I be ideals of a ring R. If N is reflexive in R, then $a n n_{r}(I ; N)=a n n_{\ell}(I ; N)$.

Proof. Let $K_{1}=\operatorname{ann}_{r}(I ; N), K_{2}=a n n_{\ell}(I ; N)$. Note that K_{1} and K_{2} are ideals of R because N and I are ideals of R. Since $I K_{1} \subseteq N$ and N is reflexive in $R, K_{1} I \subseteq N$, which yields that $K_{1} \subseteq K_{2}$. Similarly, we get $K_{2} \subseteq K_{1}$, and so $K_{1}=K_{2}$, as desired.

Proposition 2.19. Let N, I be ideals of a ring R. Suppose that ann $(I ; N) \subseteq N$. If N is a reflexive ideal of R, then $N \cap I$ is a reflexive ideal of I (as a ring).

Proof. By Lemma 2.18, we have that $\operatorname{ann}_{r}(I ; N)=a n n_{\ell}(I ; N)(=\operatorname{ann}(I ; N))$. Let A, B be ideals of I such that $A B \subseteq N \cap I$. Clearly $B A \subseteq I$. Consider the case $A B \subseteq N$. Note that $(R A)(I B) \subseteq N$ for some two left ideals $R A, I B$ of R. Since N is a reflexive ideal of $R,(I(B A) \subseteq)(I B)(R A) \subseteq N$, yielding that $B A \subseteq \operatorname{ann}(I ; N) \subseteq N$ by assumption, and so $B A \subseteq N \cap I$, yielding that $N \cap I$ is a reflexive ideal of I.

Note that the assumption in Proposition 2.19 is not surplus by the Example 2.22. Indeed, for
given ideals $N=\left(\begin{array}{lll}0 & 0 & \mathbb{Q} \\ 0 & 0 & \mathbb{Q} \\ 0 & 0 & 0\end{array}\right), I=\left(\begin{array}{ccc}\mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ of a ring R as in Example 2.22 , we have that N is a reflexive ideal of R but $N \cap I$ is not reflexive ideal of R with $\operatorname{ann}(I ; N)=\left(\begin{array}{lll}0 & 0 & \mathbb{Q} \\ 0 & 0 & \mathbb{Q} \\ 0 & 0 & \mathbb{Z}\end{array}\right) \nsubseteq N$.
Corollary 2.20. Let I be any ideal of a ring R. If N is a prime ideal of R, then $N \cap I$ is a reflexive ideal of I (as a ring).

Proof. Since N is a prime ideal of R, N is a reflexive ideal of R, and so $\operatorname{ann}_{r}(I ; N)=a n n_{\ell}(I ; N)$ by Lemma 2.18. Let $A=\operatorname{ann}(I ; N)$. Then $I A \subseteq N$. Since N is a prime ideal of $R, I \subseteq N$ or $A \subseteq N$. If $I \subseteq N$, then $N \cap I=I$ is clearly reflexive in I. If $A \subseteq N$, then $N \cap I$ is reflexive in I (as a ring) by Proposition 2.19.

3. the reflexive radicals of rings

In this section, we begin with the following Lemma:
Lemma 3.1. (1) The intersection of two reflexive ideals of a ring R is reflexive.
(2) The intersection of all reflexive ideals of a ring R is reflexive.

Proof. Clear.

We call the intersection of all reflexive ideals of a ring R the reflexive radical of R and denote it by $K(R)$. It is evident that $K(R)$ is the smallest reflexive ideal of R, and R is a ring such that $K(R)=0$ if and only if R is a reflexive ring.

Corollary 3.2. For any ring $R, K(R / K(R))=0$.
Proof. Since $K(R)$ is a reflexive ideal of R by Lemma 3.1, $R / K(R)$ is a reflexive ring by Theorem 2.10, and so $K(R / K(R))=0$.
Corollary 3.3. If $K(R)$ is semiprime (as a ring without identity) for a ring R, then R is reflexive.

Proof. Since $K(R)$ is a reflexive ideal of R, it follows from Proposition 2.17.
Example 8. Consider a ring $R=\left(\begin{array}{ccc}\mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Q} & \mathbb{Q} \\ 0 & 0 & \mathbb{Z}\end{array}\right)$ and $R_{11}=\left(\begin{array}{ll}\mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Z}\end{array}\right)$ discussed in Example
2.22. Then we have that $K\left(R_{11}\right)=\left(\begin{array}{cc}0 & \mathbb{Q} \\ 0 & 0\end{array}\right)$.

Now we will find $K(R)$. To do this, it is enough to consider the following ideals among all nonzero ideals of R :
$I_{1}=\left(\begin{array}{ccc}\mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ 0 & 0 & \mathbb{Q} \\ 0 & 0 & 0\end{array}\right), I_{2}=\left(\begin{array}{lll}0 & \mathbb{Q} & \mathbb{Q} \\ 0 & 0 & \mathbb{Q} \\ 0 & 0 & 0\end{array}\right), I_{3}=\left(\begin{array}{lll}0 & 0 & \mathbb{Q} \\ 0 & 0 & \mathbb{Q} \\ 0 & 0 & 0\end{array}\right), I_{4}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & \mathbb{Q} \\ 0 & 0 & 0\end{array}\right)$.
It is easy to check that I_{1}, I_{2}, I_{3} are reflexive ideals of R. But I_{4} is not a reflexive ideal of R
because $A B=0, B A \nsubseteq I_{4}$ for some ideals $A=\left(\begin{array}{lll}0 & 0 & \mathbb{Q} \\ 0 & 0 & \mathbb{Q} \\ 0 & 0 & \mathbb{Z}\end{array}\right), B=\left(\begin{array}{ccc}\mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\ 0 & 0 & \mathbb{Q} \\ 0 & 0 & 0\end{array}\right)$.
Therefore, we have that $K(R)=I_{1} \cap I_{2} \cap I_{3}=I_{3}=\left(\begin{array}{ccc}0 & 0 & \mathbb{Q} \\ 0 & 0 & \mathbb{Q} \\ 0 & 0 & 0\end{array}\right)$.
Now we also raise a question:
Question 2. For an ideal I (as a ring) of a ring $R, K(I)=I \cap K(R)$?
The answer is negative by the following example:
Example 9. Let $R=U_{2}(F)(2 \times 2$ upper triangular matrix ring over a field $F)$ and let $I=\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right)$ be an ideal of R. By Example $6, U_{2}(F)$ is not a reflexive ring (i.e., the zero ideal of R is not reflexive). Since $R / I \cong F \times F$, which is reflexive, I is reflexive by Theorem 2.10, i.e., $K(I)=0$. On the
other hand, observe that all nonzero ideals of R are $I, I_{1}=\left(\begin{array}{ll}0 & F \\ 0 & F\end{array}\right)$ and $I_{2}=\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right)$ which are clearly reflexive. Hence $K(R)=I \cap I_{1} \cap I_{2}=I$, and so $I \cap K(R)=I \neq 0=K(I)$.

Lemma 3.4. Let I, N be ideals of a ring R such that $I \subseteq N$. Then N is a reflexive ideal of R if and only if N / I is a reflexive ideal of a ring R / I.
Proof. Suppose that N is a reflexive ideal of R. Let $A B \subseteq N / I$ for ideals A, B of R / I. Then $A=A_{0} / I, B=B_{0} / I$ for some ideals $A_{0}, B_{0} \supseteq I$ of R. Since $A B=\left(A_{0} / I\right)\left(B_{0} / I\right)=\left(A_{0} B_{0}\right) / I \subseteq N / I$, we have that $A_{0} B_{0} \subseteq N$, and then $B_{0} A_{0} \subseteq N$ by assumption. Thus $B A=\left(B_{0} / I\right)\left(A_{0} / I\right)=\left(B_{0} A_{0}\right) / I \subseteq N / I$, yielding that N / I is a reflexive ideal of R / I. Conversely, suppose that N / I is a reflexive ideal of R / I, and let $P_{0} Q_{0} \subseteq N$ for ideals P_{0}, Q_{0} of R. Let $P_{1}=P_{0}+I, Q_{1}=Q_{0}+I$ be ideals of R. Since $P_{1} Q_{1}=\left(P_{0}+I\right)\left(Q_{0}+I\right) \subseteq$ $P_{0} Q_{0}+I,\left(P_{1} / I\right)\left(Q_{1} / I\right)=\left(P_{1} Q_{1}\right) / I \subseteq\left(P_{0} Q_{0}+I\right) / I \subseteq N / I$. Since N / I is a reflexive ideal of $R / I,\left(B_{1} / I\right)\left(P_{1} / I\right) \subseteq N / I$, and so $Q_{1} P_{1} \subseteq N$. Therefore, $Q_{0} P_{0} \subseteq Q_{1} P_{1} \subseteq N$, yielding that N is a reflexive ideal of R.

Theorem 3.5. Let R be a ring. Then we have the following:
(1) If I is an ideal of R such that $I \subseteq K(R)$, then $K(R / I)=K(R) / I$;
(2) If $K(R / J)=0$ for any ideal J of R, then $J \supseteq K(R)$.

Proof. (1) Since $K(R)$ is a reflexive ideal of $R, K(R) / I$ is a reflexive ideal of R / I by Lemma 3.4, and so $K(R / I) \subseteq K(R) / I$. To show $K(R) / I \subseteq K(R / I)$, let A be any reflexive ideal of R / I. Then $A=A_{0} / I$ for some ideal $A_{0} \supseteq I$ of R. Since A is a reflexive ideal of $R / I, A_{0}$ is a reflexive ideal of R by Lemma 3.4. Thus $K(R) \subseteq A_{0}$, and so $K(R) / I \subseteq A_{0} / I(=A)$, yielding that $K(R) / I \subseteq K(R / I)$.
(2) Assume that $K(R) \supset J(K(R) \neq J)$. Since $K(R / J)=0, K(R) / J=$ $K(R / J)=0$ by (1), and then $K(R) \subseteq J$, which is a contradiction. Hence $J \supseteq K(R)$.

Theorem 3.6. For any ring R, we have $K\left(M_{n}(R)\right)=M_{n}(K(R))$.
Proof. Let $N=K(R)$. By Lemma 3.1, N is a reflexive ideal of R, and so $M_{n}(N)$ is a reflexive ideal of $M_{n}(R)$ by Theorem 2.13. Since $M_{n}(N)$ is a reflexive ideal of $M_{n}(R), K\left(M_{n}(R)\right) \subseteq M_{n}(N)$. Next, we will show that $M_{n}(N) \subseteq K\left(M_{n}(R)\right)$. Let A be any reflexive ideal of $M_{n}(R)$. Then there exists an ideal A_{0} of R such that $A=M_{n}\left(A_{0}\right)$. Since A is reflexive, A_{0} is reflexive by Theorem 2.13, and so $N \subseteq A_{0}$. Thus $M_{n}(N) \subseteq M_{n}\left(A_{0}\right)=A$, yielding that $M_{n}(N) \subseteq K\left(M_{n}(R)\right)$. Therefore, we have $K\left(M_{n}(R)\right)=M_{n}(K(R))$.

Proposition 3.7. For any ring R, we have the following:
(1) $K(R)[x] \subseteq K(R[x])$;
(2) If $R[x]$ is reflexive, then R is reflexive.

Proof. (1) Let $N=K(R)$. It is enough to show that $N[x] \subseteq A$ for any reflexive ideal A of $R[x]$. We note that $A \cap R$ is a reflexive ideal of R. Indeed, if $a R b \subseteq$ $A \cap R$ for $a, b \in R$, then $a R[x] b=(a R b)[x] \subseteq A$, and then $(b R a)[x]=b R[x] a \subseteq A$ because A is reflexive, and so $b R a \subseteq A \cap R$, yielding that $A \cap R$ is reflexive. Since $A \cap R$ is reflexive, $N \subseteq A \cap R \subseteq A$. Therefore, $N[x] \subseteq A$, as desired.
(2) It follows from (1).

Lambek [5] called a right ideal I of a ring R symmetric if $r s t \in I$ implies $r t s \in I$ for all $r, s, t \in R$. It is obvious that every symmetric right ideal of a unital ring is completely reflexive (and hence reflexive). Note that the converse of (2) of proposition 3.7 could not be true by the following example:

Example 10. ([1, Example 2.4]). Let $P=\mathbb{Z}_{2}\left\{a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}, c\right\}$ be the free algebra of polynomials with zero constant terms in noncommuting indeterminates $a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}, c$ over \mathbb{Z}_{2}. Consider an ideal of the ring $\mathbb{Z}_{2}+P$, say I, generated by the following elements:

$$
\begin{gathered}
a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}, a_{1} b_{2}+a_{2} b_{1}, a_{2} b_{2}, a_{0} r b_{0}, a_{2} r b_{2}, \\
b_{0} a_{0}, b_{0} a_{1}+b_{1} a_{0}, b_{0} a_{2}+b_{1} a_{1}+b_{2} a_{0}, b_{1} a_{2}+b_{2} a_{1}, b_{2} a_{2}, b_{0} r a_{0}, b_{2} r a_{2}, \\
\left(a_{0}+a_{1}+a_{2}\right) r\left(b_{0}+b_{1}+b_{2}\right),\left(b_{0}+b_{1}+b_{2}\right) r\left(a_{0}+a_{1}+a_{2}\right), \text { and, } r_{1} r_{2} r_{3} r_{4} .
\end{gathered}
$$

where $r, r_{1}, r_{2}, r_{3}, r_{4} \in P$. Set $R=\left(\mathbb{Z}_{2}+P\right) / I$. It was shown that R is symmetric (and hence reflexive), but $R[x]$ is not reflexive by considering two ideals A, B of R generated by $a_{0}+a_{1} x+a_{2} x^{2},\left(b_{0}+b_{1} x+b_{2} x^{2}\right) c$, respectively, satisfying that $A B=0$ but $0 \neq\left(b_{0}+b_{1} x+b_{2} x^{2}\right) c\left(a_{0}+a_{1} x+a_{2} x^{2}\right) \in B A$.

A ring R is called quasi-Armendariz [3] provided that $a_{i} R b_{j}=0$ for all i, j whenever $f=\sum_{i=0}^{m} a_{i} x^{i}, g=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfy $f R[x] g=0$. In [1], V. Camilo et al. have shown that for a quasi-Armendariz ring R, R is idealsymmetric if and only if $R[x]$ is ideal-symmetric. We also have the following:

Theorem 3.8. Let R be a quasi-Armendariz ring. Then R is reflexive if and only if $R[x]$ is reflexive.

Proof. The implication (\Leftarrow) holds by Proposition 3.7. To show the reverse inclusion, suppose that R is reflexive. Consider $f R[x] g=0$ for $f=\sum_{i=0}^{m} a_{i} x^{i}, g=$ $\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$. Since R is quasi-Armendariz, $a_{i} R b_{j}=0$ for all i, j, and then $b_{j} R a_{i}=0$ for all i, j because R is reflexive. To show $g R[x] f=0$, consider $g h f \in$ $g R[x] f$ for any arbitrary $h=\sum_{k=0}^{\ell} c_{k} x^{k} \in R[x]$. Then $g h f=\sum_{k=0}^{\ell}\left(g c_{k} f\right) x^{k}$. Note that for each $k, g c_{k} f=\sum_{t=0}^{m+n} \alpha_{t} x^{t}$, where $\alpha_{t}=\sum_{i, j=0}^{t} b_{j} c_{k} a_{i}(i+j=t)$. Since $b_{j} c_{k} a_{i} \in b_{j} R a_{i}=0$ for all $i, j, \alpha_{t}=0$ for each t, and so $g c_{k} f=0$ for each k, yielding that $g h f=0$. Thus $g R[x] f=0$, and so $R[x]$ is reflexive.

Corollary 3.9. If R is a ring such that $R / K(R)$ is quasi-Armendariz, then $K(R)[x]=K(R[x])$.
Proof. By Proposition 3.7, we have $K(R)[x] \subseteq K(R[x])$. To show the reverse inclusion, let $N=K(R)$. Since N is reflexive, R / N is a reflexive ring by Theorem 2.10. Since R / N is quasi-Armendariz, $(R / N)[x]$ is reflexive by Theorem 3.8. Since $(R / N)[x] \cong R[x] / N[x]$ is reflexive, $N[x]$ is a reflexive ideal of $R[x]$ by Theorem 2.10, and so $N[x] \supseteq K(R[x])$ as desired.

References

[1] V. Camillo, T. Kwak, Y. Lee, Ideal-symmetric and semiprime rings, Comm. Algebra 41 (2013), 4504-4519.
[2] P. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), 641-648.
[3] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra, 168 (2002), 45-52.
[4] T. Kwak, Y. Lee, Reflexive property of rings, Comm. Algebra 40 (2012), 1576-1594.
[5] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971) 359-368.
[6] G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra, 174 (2002),311-318.
[7] G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), 1709-1724.
[8] L. Motais de Narbonne, Anneaus semi-commutatifs et unis riels anneaus dont les ide aus principaus sont idempotents, In: Procedings of the 106th National Cogress of Learned Societies (Perpignan, 1981), Paris: Bib. Nat., 71-73.

Juncheol Han
Department of Mathematics Education, Pusan National University, Pusan 46277,

Korea

E-mail address: jchan@pusan.ac.kr
Sangwon Park
Department of Mathematics, Dong-A University, Pusan, 49315, Korea
E-mail address: swpark@donga.ac.kr

[^0]: Received August 14, 2017; Accepted September 19, 2017.
 2010 Mathematics Subject Classification. 16D25, 16S50
 Key words and phrases. reflexive ideal, completely reflexive ideal, reflexive ring, completely reflexive ring, reflexive radical.

 This study was supported by research funds from Dong-A University.
 $*$ Corresponding author.

