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RINGS WITH REFLEXIVE IDEALS

Juncheol Han and Sangwon Park∗

Abstract. Let R be a ring with identity. A right ideal ideal I of a ring
R is called reflexive (resp. completely reflexive) if aRb ⊆ I implies

that bRa ⊆ I (resp. if ab ⊆ I implies that ba ⊆ I) for any a, b ∈ R.

R is called reflexive (resp. completely reflexive) if the zero ideal of R
is a reflexive ideal (resp. a completely reflexive ideal). Let K(R) (called

the reflexive radical of R) be the intersection of all reflexive ideals of

R. In this paper, the following are investigated: (1) Some equivalent
conditions on an reflexive ideal of a ring are obtained; (2) reflexive (resp.

completely reflexive) property is Morita invariant; (3) For any ring R,
we have K(Mn(R)) = Mn(K(R)) where Mn(R) is the ring of all n by

n matrices over R; (4) For a ring R, we have K(R)[x] ⊆ K(R[x]); in

particular, if R is quasi-Armendaritz, then R is reflexive if and only if
R[x] is reflexive.

1. Introduction and basic definitions

Throughout this paper, all rings are associative with identity unless otherwise
specified. Let R be a ring. Let J(R) and P (R) denote the Jacobson radical
and the prime radical of R respectively. Denote the n by n full (resp. upper
triangular) matrix ring over R by Mn(R) (resp. Un(R)). Z (Zn) denotes the ring
of integers (modulo n). R[x] denotes the polynomial ring with an indeterminate
x over R.

Mason [7] called a right ideal N of a ring R reflexive if aRb ⊆ N implies
bRa ⊆ N for a, b ∈ R, and assign the term completely reflexive to those N for
which ab ∈ N implies ba ∈ N . If the zero ideal is reflexive (resp. completely
reflexive), then R is usually called reflexive (resp. completely reflexive); while
a completely reflexive ring is called reversible by Cohn [2] (also refer [6]).

It is obvious that both any prime ideal and semiprime ideal of a ring R is
reflexive. However, the converse need not be true by the following examples:
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Example 1. Let Z be the ring of integers. Then for all non-prime integers n,
nZ are clearly reflexive, but not semiprime ideals of Z.

Example 2. Let H be the Hamilton quaternion of real numbers. Consider a
ring

R =


a b c

0 a b
0 0 a

 : a, b, c ∈ H

 .

ThenR is a noncommutative local ring with J2 6= 0 = J3. Note that {R, J, J2, 0}
is the set of all ideals of R, and so all ideals of R are reflexive. But 0 and J2

are not semiprime ideals of R.

In [7], it was shown that if 1 ∈ R, then N is a reflexive right ideal iff whenever
A,B are right ideals with AB ⊆ N , then BA ⊆ N . In section 2, we will show
that a right ideal N of a ring R is reflexive iff AB ⊆ N implies BA ⊆ N for
any right (left) ideals A,B in R iff ARB ⊆ N implies that BRA ⊆ N for any
nonempty subsets A,B of R. Narbonne [8] called a ring R semicommutative
if ab = 0 implies aRb = 0 for a, b ∈ R. We call a right ideal N of a ring R
semicommutative if ab ∈ N implies aRb ⊆ N for a, b ∈ R. It is shown that any
completely reflexive ideal of a ring is reflexive (resp. semicommutative).

It was shown in [4, Proposition 2.2] that a ring R is reflexive and semicom-
mutative iff R is reversible (equivalently, completely reflexive). In section 2, we
will show that an ideal N of a ring R is reflexive and semicommutative iff N is
completely reflexive. We will also show that (1) the reflexive (resp. completely
reflexive) property is Morita invariant by obtaining that an ideal N is reflexive
(resp. completely reflexive) iff R/N is reflexive (resp. completely reflexive) ring;
(2) for given ideals N, I of a ring R with {a ∈ R|aI ⊆ N} = N , if N is reflexive
in R, then N ∩ I is a reflexive ideal of I (as a ring).

We call the intersection of all reflexive ideals of a ring R the reflexive radical
of R and denote it by K(R). It is evident that K(R) is the smallest reflexive
ideal of R. If R has no proper reflexive ideals, then K(R) = R. It is clear
that K(R) ⊆ P (R) ⊆ J(R) since every prime ideal of R is reflexive and every
maximal ideal is prime. In section 3, we will show that (1) if I is an ideal of a
ring R such that I ⊆ K(R), then K(R/I) = K(R)/I; (2) K(R) is the smallest
ideal of R among all ideals J of R satisfying K(R/J) = 0; (3) K(Mn(R)) =
Mn(K(R)); (4) K(R)[x] ⊆ K(R[x]).

2. ideal-reversible ideals of rings

Proposition 2.1. Let N be a right ideal N of a ring R. Then N is reflexive if
and only if IJ ⊆ N implies JI ⊆ N for any right ideals I, J of R.

Proof. Refer [7, Proposition 2.3]. �
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Corollary 2.2. Any reflexive right ideal of a ring is two-sided ideal.

Proof. Let N be a reflexive right ideal of a ring R. Since N is a right ideal of
R, NR ⊆ N for two right ideals N,R of R. Since N is reflexive, RN ⊆ N by
Proposition 2.1, and so N is a two-sided ideal of R. �

Proposition 2.3. For a right ideal N of a ring R, the following are equivalent:
(1) N is reflexive;
(2) IJ ⊆ N implies JI ⊆ N for any right ideals I, J of R;
(3) IJ ⊆ N implies JI ⊆ N for any ideals I, J of R;
(4) ARB ⊆ N implies BRA ⊆ N for any nonempty subsets A,B of R.

Proof. (1) ⇔ (2) It follows from Proposition 2.1.

(4) ⇒ (1) and (4) ⇒ (2) ⇒ (3) are clear.

(1) ⇒ (4) Suppose that N is reflexive. Let A,B be two nonempty subsets of
R with ARB ⊆ N . Then aRb ⊆ N for any a ∈ A and b ∈ B, and so bRa ⊆ N
by assumption. Thus BRA =

∑
a∈A,b∈B bRa ⊆ N .

(3) ⇒ (2) Suppose that (3) holds. Let I, J be two right ideals of R with
IJ ⊆ N . Since N is two-sided ideal of R by Corollary 2.2, (RI)(RJ) ⊆ (RI)J ⊆
RN ⊆ N for some ideals RI,RJ of R, and then JI ⊆ (RJ)(RI) ⊆ N by
assumption. �

Corollary 2.4. For a ring R, the following are equivalent:
(1) R is reflexive;
(2) IJ = 0 implies JI = 0 for any right ideals I, J of R;
(3) IJ = 0 implies JI = 0 for any ideals I, J of R;
(4) ARB = 0 implies BRA = 0 for any nonempty subsets A,B of R.

Proof. It follows form the Proposition 2.3. �

Proposition 2.5. Let N be a right ideal of a ring R. Then we have the follow-
ing:

(1) If N is completely reflexive, then N is reflexive;
(2) If N is completely reflexive, then N is semicommutative.

Proof. (1) Suppose that AB ⊆ N for any right ideals A,B in R, and let α ∈ BA
be arbitrary. Then α =

∑n
i=1 biai where ai ∈ A, bi ∈ B. Since each aibi ∈ AB ⊆

N and N is completely reflexive, biai ∈ N , yielding that α ∈ N , and so N is
reflexive.

(2) Let ab ∈ N for a, b ∈ R. Since N is a right ideal of R, a(br) ∈ N
for all r ∈ R, and so (br)a ∈ N because N is completely reflexive. Thus
bRa ⊆ N , and so (bR)(aR) ⊆ N . Since N is reflexive by (1), we have that
aRb ⊆ (aR)(bR) ⊆ N . Therefore, N is semicommutative. �

Note that the converses of Proposition 2.5 do not hold by the following ex-
amples:
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Example 3. Let Z4 be the rings of integers modulo 4 and R = Mat2(Z4). Let
N = Mat2(2Z4) of R be an ideal of R. Note that N is not completely reflexive

because pq ∈ N , but qp /∈ N for some p =

(
1 1
0 0

)
, q =

(
1 0
1 2

)
∈ R. Next, we

will show that N is reflexive. Since all the two-sided ideals of R are 0, N and
R, it is easy to show that N is reflexive by Proposition 2.3.

Example 4. By [4, Example 2.3. (1) ], there exists a semicommutative ring
R but not reflexive. Hence we can take a semicommutative ring R1 which is
not completely reflexive. Consider R = R1 × R2 for some ring R2, and let
N = {0}×R2 be an ideal of R. Note that R/N is isomorphic to R1. Since R1 is
semicommutative, R/N is semicommutative, and so N is semicommutative by
the below Theorem 2.11. On the other hand, sinceR1 is not completely reflexive,
R/N is not completely reflexive, and then N is not completely reflexive by the
below Corollary 2.12.

Corollary 2.6. For a ring R we have the following:
(1) If R is completely reflexive, then R is reflexive;
(2) If R is completely reflexive, then R is semicommutative.

Proof. It follows from Proposition 2.5. �

Corollary 2.7. Any completely reflexive right ideal of a ring is two-sided ideal.

Proof. It follows from Corollary 2.2 and Proposition 2.5. �

Proposition 2.8. Let N be a right ideal of a ring R. Then N is both reflexive
and semicommutative if and only if N is completely reflexive.

Proof. Suppose that N is both reflexive and semicommutative. Let ab ∈ N for
any a, b ∈ R. Since N is semicommutative, aRb ⊆ N . Since N is reflexive,
ba ∈ bRa ⊆ N , and so N is completely reflexive. The converse follows from
Proposition 2.5. �

Corollary 2.9. A ring R is both reflexive and semicommutative if and only if
R is completely reflexive.

Proof. It follows from Proposition 2.8. �

Theorem 2.10. N is a reflexive ideal of a ring R if and only if R/N is a
reflexive ring.

Proof. Suppose that N is a reflexive ideal of R. Let I, J be ideals of R/N
such that IJ ⊆ N , a zero of R/N . Then there exists ideals I0, J0 of R such
that I0, J0 ⊇ N and I = I0/N, J = J0/N . Since IJ = (I0/N)(J0/N) =
(I0J0)/N ⊆ N , I0J0 ⊆ N . Since N is reflexive, J0I0 ⊆ N by Proposition 2.3.
Thus JI = (J0I0)/N = N , which yields that R/N is a reflexive ring.

Suppose that R/N is a reflexive ring. Let A,B be ideals of N such that
AB ⊆ N . Thus AB + N = N . Note that (A + N)(B + N) ⊆ AB + N = N ,
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and so ((A+N)/N)((B +N)/N) = (A+N)(B +N)/N = N . Since R/N is a
reflexive ring, ((B +N)/N)((A+N)/N) = (B +N)(A+N)/N) = N , yielding
that (B +N)(A+N) ⊆ N , and so BA ⊆ (B +N)(A+N) ⊆ N , which means
that N is a reflexive ideal of R. �

Theorem 2.11. N is a semicommutative ideal of a ring R if and only if R/N
is a semicommutative ring.

Proof. Let R = R/N . Suppose that N is a semicommutative ideal of R. Let
ab = 0(= N), the zero of R/N , for a = a + N, b = b + N ∈ R/N . Let r =
r +N ∈ R/N be arbitrary. Since N is semicommutative and ab ∈ N , arb ∈ N ,
and so arb = (a)(r)(b) = 0, i.e., aRb = 0. Thus R is a semicommutative ring.

Suppose that R is a semicommutative ring. Let ab ∈ N for a, b ∈ R and
r ∈ R be arbitrary. Then ab = 0. Since R is semicommutative, (a)(r)(b) = 0,
and so arb ∈ N , i.e., aRb ⊆ N . Thus N is a semicommutative ideal of R. �

Corollary 2.12. For an ideal N of a ring R, N completely reflexive if and only
if R/N is a completely reflexive ring.

Proof. It follows from Proposition 2.5, Theorem 2.10 and Theorem 2.11. �

Theorem 2.13. Let N be an ideal of a ring R. Then we have the following:
(1) If N is reflexive in R, then so is eNe in eRe for each e2 = e ∈ R.
(2) N is reflexive in R if and only if Mn(N) is reflexive in Mn(R) for all

n ≥ 1.

Proof. (1) Suppose that N is reflexive in R. Let a, b ∈ eRe such that a(eRe)b ⊆
eNe. Since a(eRe)b ⊆ eNe ⊆ N and N is reflexive, we have that b(eRe)a ⊆ N ,
and clearly b(eRe)a ⊆ eNe, and so eNe is reflexive in eRe.

(2) Suppose that N is reflexive in R. Let A,B be ideals of Mn(R) such that
AB ⊆ Mn(N). Note that there exist ideals I, J such that A = Mn(I), B =
Mn(J). Note that AB = Mn(I)Mn(J) = Mn(IJ) and then IJ ⊆ N . Since N
is reflexive, JI ⊆ N , and so BA = Mn(J)Mn(I) = Mn(JI) ⊆ Mn(N). Thus
Mn(N) is reflexive in Mn(R).

Conversely, if Mn(N) is reflexive in Mn(R), then e11Mn(N)e11 is reflexive in
e11Mn(R)e11 by (1) where e11 is the matrix in Mn(R) with (1,1)-entry 1 and
elsewhere 0. Since N ∼= e11Mn(N)e11 and R ∼= e11Mn(R)e11, N is reflexive in
R. �

Corollary 2.14. Let R be a ring. Then we have the following:
(1) If R is reflexive, then so is eRe for each e2 = e ∈ R.
(2) R is reflexive if and only if Mn(R) is reflexive for all n ≥ 1.

Proof. It follows from Theorem 2.13. �

Remark 1. Let N be an ideal of a ring R. By the similar argument given in
the proof of Theorem 2.13, we have that (1) if N is a completely reflexive ideal
of R, then so is eNe in eRe for each e2 = e ∈ R; (2) N is completely reflexive
in R if and only if Mn(N) is completely reflexive in Mn(R) for all n ≥ 1.
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Corollary 2.15. Let N be a reflexive ideal of a ring R. Then eRe is reflexive
for an idempotent e ∈ R where e = e+N and R = R/N .

Proof. It follows from Theorem 2.10 and Corollary 2.14. �

Proposition 2.16. If N is a semicommutative ideal of a ring R, then so is
eNe in eRe for each e2 = e ∈ R.

Proof. Let a, b ∈ eRe such that ab ⊆ eNe. Since N is semicommutative, aRb ∈
N , and then aRb = e(aRb)e ⊆ eNe, yielding that eNe is semicommutative. �

Even though the reflexive (resp. completely reflexive) property of any ideal of
a ring is Morita invariant by Theorem 2.13 (resp. Remark 1), the semicommu-
tative property of any ideal of a ring does not satisfy Morita invariant property
by the following example:

Example 5. Let Z4 be the rings of integers modulo 4 and R = Mat2(Z4).
Then clearly, 2Z4 is a semicommutative ideal of Z4. Observe that the ideal

N = Mat2(2Z4) of R is not semicommutative. Indeed, take a =

(
1 1
1 1

)
, b =(

1 3
1 3

)
∈ R. Then ab =

(
2 2
2 2

)
∈ N , but arb =

(
1 3
2 3

)
/∈ N for some

r =

(
1 2
1 1

)
∈ R.

Proposition 2.17. Let I be a reflexive right ideal of a ring R. If I is semiprime
(as a ring without identity), then R is a reflexive ring.

Proof. Since I is reflexive, I is two-sided ideal of R by Corollary 2.2, and then
R/I is a reflexive ring by Theorem 2.10. Suppose that aRb = 0 for a, b ∈ R.
Then aRb = 0 = I where R = R/I, a = a + I, b = b + I ∈ R. Since R is a
reflexive ring, bRa = 0, and so bRa ⊆ I. Note that (bRa)2 = (bRa)(bRa) = 0
because ab = 0, yielding that bRa = 0 because bRa ⊆ I and I is semiprime,
and so R is a reflexive ring. �

Note that a subring of a reflexive ring could not be reflexive by the following
example:

Example 6. Let R be a reflexive ring and consider U2(R) (2×2 upper triangular
matrix ring over R), which is a subring ofMat2(R). By Corollary 2.14, Mat2(R)

is a reflexive ring. Let A =

(
R R
0 0

)
, B =

(
0 R
0 R

)
be two ideals of U2(R).

Since AB 6= 0 = BA, U2(R) is not reflexive.

Now we raise a question:

Question 1. If N is a reflexive ideal of a ring R, then is N ∩ I a reflexive ideal
of I (as a ring) for any ideal I of R?

The answer is negative by the following example:
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Example 7. Let R =

Q Q Q
0 Q Q
0 0 Z

 be a ring and R11 =

(
Q Q
0 Z

)
be the

minor matrix of R obtained by crossing out first row and first column of R.
Then all the nonzero ideals of R11 are obtained as follows:

P =

(
Q Q
0 0

)
, J =

(
0 Q
0 0

)
, Kn =

(
0 Q
0 nZ

)
and Tn =

(
Q Q
0 nZ

)
for all

positive integers n.

By the simple computation, we have the following:

PJ = PKn = JKn = JTn = TnJ = J − (1),

JP = KnP = KnJ = 0− (2),

PTn = TnP = P − (3),

KmKn = KmTn = TmKn = Kmn,

TmTn = TnTm = Tmn

for all positive integers m,n. We observe that all the nonzero ideals of R11 are
reflexive by the above equalities, and the smallest reflexive ideal of R11 is J .

Next, consider an ideal N =

0 0 Q
0 0 Q
0 0 0

 of R. Then it is easy to check

that N is a reflexive ideal of R because

(
0 Q
0 0

)
is a reflexive ideal of R11. Let

N0 = N ∩ I =

0 0 Q
0 0 0
0 0 0

 where I =

Q Q Q
0 0 0
0 0 0

. Observe that N0 is not

a reflexive ideal of R. Indeed, taking two ideals

A =

0 Q Q
0 0 0
0 0 0

 , B = I of I, we have that AB = 0 but BA = A * N0,

yielding that N0 is not a reflexive ideal of I (as a ring).

Let I be a subset of a ring R and N be an ideal of R. The set {a ∈ R|aI ⊆ N}
is a left ideal of R, which is actually an ideal if I is a left ideal. The set
{a ∈ R|aI ⊆ N} is called the left annihilator of I in N and is denoted
ann`(I;N). Similarly, the set

annr(I;N) = {a ∈ R|Ia ⊆ N}
is an ideal of R if I is a right ideal. The set annr(I;N) is called the right
annihilator of I in N . It is evident that N ⊆ ann`(I;N) ∩ annr(I;N). When
ann`(I;N) = annr(I;N), it is denoted ann(I;N), and called annihilator of I
in N . In particular, if N = 0, then ann`(I; 0) (resp. annr(I; 0)) is called left
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annihilator of I (resp. right annihilator of I), and is simply denoted ann`(I)
(resp. annr(I)). When ann`(I) = annr(I), it is denoted ann(I).

Lemma 2.18. Let N, I be ideals of a ring R. If N is reflexive in R, then
annr(I;N) = ann`(I;N).

Proof. Let K1 = annr(I;N),K2 = ann`(I;N). Note that K1 and K2 are ideals
of R because N and I are ideals of R. Since IK1 ⊆ N and N is reflexive in
R, K1I ⊆ N , which yields that K1 ⊆ K2. Similarly, we get K2 ⊆ K1, and so
K1 = K2, as desired. �

Proposition 2.19. Let N, I be ideals of a ring R. Suppose that ann(I;N) ⊆ N .
If N is a reflexive ideal of R, then N ∩ I is a reflexive ideal of I (as a ring).

Proof. By Lemma 2.18, we have that annr(I;N) = ann`(I;N)(= ann(I;N)).
Let A,B be ideals of I such that AB ⊆ N ∩ I. Clearly BA ⊆ I. Consider the
case AB ⊆ N . Note that (RA)(IB) ⊆ N for some two left ideals RA, IB of
R. Since N is a reflexive ideal of R, (I(BA) ⊆)(IB)(RA) ⊆ N , yielding that
BA ⊆ ann(I;N) ⊆ N by assumption, and so BA ⊆ N ∩ I, yielding that N ∩ I
is a reflexive ideal of I. �

Note that the assumption in Proposition 2.19 is not surplus by the Example
2.22. Indeed, for

given ideals N =

0 0 Q
0 0 Q
0 0 0

 , I =

Q Q Q
0 0 0
0 0 0

 of a ring R as in Example

2.22, we have that N is a reflexive ideal of R but N ∩ I is not reflexive ideal of

R with ann(I;N) =

0 0 Q
0 0 Q
0 0 Z

 * N .

Corollary 2.20. Let I be any ideal of a ring R. If N is a prime ideal of R,
then N ∩ I is a reflexive ideal of I (as a ring).

Proof. Since N is a prime ideal of R, N is a reflexive ideal of R, and so
annr(I;N) = ann`(I;N) by Lemma 2.18. Let A = ann(I;N). Then IA ⊆ N .
Since N is a prime ideal of R, I ⊆ N or A ⊆ N . If I ⊆ N , then N ∩ I = I
is clearly reflexive in I. If A ⊆ N , then N ∩ I is reflexive in I (as a ring) by
Proposition 2.19. �

3. the reflexive radicals of rings

In this section, we begin with the following Lemma:

Lemma 3.1. (1) The intersection of two reflexive ideals of a ring R is reflexive.
(2) The intersection of all reflexive ideals of a ring R is reflexive.

Proof. Clear. �
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We call the intersection of all reflexive ideals of a ring R the reflexive radical
of R and denote it by K(R). It is evident that K(R) is the smallest reflexive
ideal of R, and R is a ring such that K(R) = 0 if and only if R is a reflexive
ring.

Corollary 3.2. For any ring R, K(R/K(R)) = 0.

Proof. Since K(R) is a reflexive ideal of R by Lemma 3.1, R/K(R) is a reflexive
ring by Theorem 2.10, and so K(R/K(R)) = 0. �

Corollary 3.3. If K(R) is semiprime (as a ring without identity) for a ring
R, then R is reflexive.

Proof. Since K(R) is a reflexive ideal of R, it follows from Proposition 2.17. �

Example 8. Consider a ring R =

Q Q Q
0 Q Q
0 0 Z

 and R11 =

(
Q Q
0 Z

)
discussed

in Example

2.22. Then we have that K(R11) =

(
0 Q
0 0

)
.

Now we will find K(R). To do this, it is enough to consider the following
ideals among all nonzero ideals of R:

I1 =

Q Q Q
0 0 Q
0 0 0

 , I2 =

0 Q Q
0 0 Q
0 0 0

 , I3 =

0 0 Q
0 0 Q
0 0 0

 , I4 =

0 0 0
0 0 Q
0 0 0

 .

It is easy to check that I1, I2, I3 are reflexive ideals of R. But I4 is not a
reflexive ideal of R

becauseAB = 0, BA * I4 for some idealsA =

0 0 Q
0 0 Q
0 0 Z

 , B =

Q Q Q
0 0 Q
0 0 0

.

Therefore, we have that K(R) = I1 ∩ I2 ∩ I3 = I3 =

0 0 Q
0 0 Q
0 0 0

.

Now we also raise a question:

Question 2. For an ideal I (as a ring) of a ring R, K(I) = I ∩K(R)?

The answer is negative by the following example:

Example 9. Let R = U2(F ) (2 × 2 upper triangular matrix ring over a field

F ) and let I =

(
0 F
0 0

)
be an ideal of R. By Example 6, U2(F ) is not a

reflexive ring (i.e., the zero ideal of R is not reflexive). Since R/I ∼= F × F ,
which is reflexive, I is reflexive by Theorem 2.10, i.e., K(I) = 0. On the
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other hand, observe that all nonzero ideals of R are I, I1 =

(
0 F
0 F

)
and

I2 =

(
F F
0 0

)
which are clearly reflexive. Hence K(R) = I ∩ I1 ∩ I2 = I, and

so I ∩K(R) = I 6= 0 = K(I).

Lemma 3.4. Let I,N be ideals of a ring R such that I ⊆ N . Then N is a
reflexive ideal of R if and only if N/I is a reflexive ideal of a ring R/I.

Proof. Suppose that N is a reflexive ideal of R. Let AB ⊆ N/I for ideals A,B
of R/I. Then A = A0/I,B = B0/I for some ideals A0, B0 ⊇ I of R. Since
AB = (A0/I)(B0/I) = (A0B0)/I ⊆ N/I, we have that A0B0 ⊆ N , and then
B0A0 ⊆ N by assumption. Thus BA = (B0/I)(A0/I) = (B0A0)/I ⊆ N/I,
yielding that N/I is a reflexive ideal of R/I. Conversely, suppose that N/I
is a reflexive ideal of R/I, and let P0Q0 ⊆ N for ideals P0, Q0 of R. Let
P1 = P0 + I,Q1 = Q0 + I be ideals of R. Since P1Q1 = (P0 + I)(Q0 + I) ⊆
P0Q0 + I, (P1/I)(Q1/I) = (P1Q1)/I ⊆ (P0Q0 + I)/I ⊆ N/I. Since N/I is
a reflexive ideal of R/I, (B1/I)(P1/I) ⊆ N/I, and so Q1P1 ⊆ N . Therefore,
Q0P0 ⊆ Q1P1 ⊆ N , yielding that N is a reflexive ideal of R. �

Theorem 3.5. Let R be a ring. Then we have the following:
(1) If I is an ideal of R such that I ⊆ K(R), then K(R/I) = K(R)/I;
(2) If K(R/J) = 0 for any ideal J of R, then J ⊇ K(R).

Proof. (1) Since K(R) is a reflexive ideal of R, K(R)/I is a reflexive ideal of R/I
by Lemma 3.4, and so K(R/I) ⊆ K(R)/I. To show K(R)/I ⊆ K(R/I), let A
be any reflexive ideal of R/I. Then A = A0/I for some ideal A0 ⊇ I of R. Since
A is a reflexive ideal of R/I, A0 is a reflexive ideal of R by Lemma 3.4. Thus
K(R) ⊆ A0, and so K(R)/I ⊆ A0/I (= A), yielding that K(R)/I ⊆ K(R/I).

(2) Assume that K(R) ⊃ J (K(R) 6= J). Since K(R/J) = 0, K(R)/J =
K(R/J) = 0 by (1), and then K(R) ⊆ J , which is a contradiction. Hence
J ⊇ K(R). �

Theorem 3.6. For any ring R, we have K(Mn(R)) = Mn(K(R)).

Proof. Let N = K(R). By Lemma 3.1, N is a reflexive ideal of R, and so Mn(N)
is a reflexive ideal of Mn(R) by Theorem 2.13. Since Mn(N) is a reflexive ideal
ofMn(R), K(Mn(R)) ⊆Mn(N). Next, we will show that Mn(N) ⊆ K(Mn(R)).
Let A be any reflexive ideal of Mn(R). Then there exists an ideal A0 of R such
that A = Mn(A0). Since A is reflexive, A0 is reflexive by Theorem 2.13, and
so N ⊆ A0. Thus Mn(N) ⊆ Mn(A0) = A, yielding that Mn(N) ⊆ K(Mn(R)).
Therefore, we have K(Mn(R)) = Mn(K(R)). �

Proposition 3.7. For any ring R, we have the following:
(1) K(R)[x] ⊆ K(R[x]);
(2) If R[x] is reflexive, then R is reflexive.
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Proof. (1) Let N = K(R). It is enough to show that N [x] ⊆ A for any reflexive
ideal A of R[x]. We note that A ∩R is a reflexive ideal of R. Indeed, if aRb ⊆
A∩R for a, b ∈ R, then aR[x]b = (aRb)[x] ⊆ A, and then (bRa)[x] = bR[x]a ⊆ A
because A is reflexive, and so bRa ⊆ A ∩ R, yielding that A ∩ R is reflexive.
Since A ∩R is reflexive, N ⊆ A ∩R ⊆ A. Therefore, N [x] ⊆ A, as desired.

(2) It follows from (1). �

Lambek [5] called a right ideal I of a ring R symmetric if rst ∈ I implies
rts ∈ I for all r, s, t ∈ R. It is obvious that every symmetric right ideal of a
unital ring is completely reflexive (and hence reflexive). Note that the converse
of (2) of proposition 3.7 could not be true by the following example:

Example 10. ([1, Example 2.4]). Let P = Z2{a0, a1, a2, b0, b1, b2, c} be the
free algebra of polynomials with zero constant terms in noncommuting indeter-
minates a0, a1, a2, b0, b1, b2, c over Z2. Consider an ideal of the ring Z2 +P , say
I, generated by the following elements:

a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2,

b0a0, b0a1 + b1a0, b0a2 + b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2,

(a0 + a1 + a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2), and, r1r2r3r4.

where r, r1, r2, r3, r4 ∈ P . Set R = (Z2+P )/I. It was shown that R is symmetric
(and hence reflexive), but R[x] is not reflexive by considering two ideals A,B of
R generated by a0 + a1x+ a2x

2, (b0 + b1x+ b2x
2)c, respectively, satisfying that

AB = 0 but 0 6= (b0 + b1x+ b2x
2)c(a0 + a1x+ a2x

2) ∈ BA.

A ring R is called quasi-Armendariz [3] provided that aiRbj = 0 for all i, j
whenever f =

∑m
i=0 aix

i, g =
∑n

j=0 bjx
j ∈ R[x] satisfy fR[x]g = 0. In [1],

V. Camilo et al. have shown that for a quasi-Armendariz ring R, R is ideal-
symmetric if and only if R[x] is ideal-symmetric. We also have the following:

Theorem 3.8. Let R be a quasi-Armendariz ring. Then R is reflexive if and
only if R[x] is reflexive.

Proof. The implication (⇐) holds by Proposition 3.7. To show the reverse in-
clusion, suppose that R is reflexive. Consider fR[x]g = 0 for f =

∑m
i=0 aix

i, g =∑n
j=0 bjx

j ∈ R[x]. Since R is quasi-Armendariz, aiRbj = 0 for all i, j, and then

bjRai = 0 for all i, j because R is reflexive. To show gR[x]f = 0, consider ghf ∈
gR[x]f for any arbitrary h =

∑`
k=0 ckx

k ∈ R[x]. Then ghf =
∑`

k=0(gckf)xk.

Note that for each k, gckf =
∑m+n

t=0 αtx
t, where αt =

∑t
i,j=0 bjckai (i+ j = t).

Since bjckai ∈ bjRai = 0 for all i, j, αt = 0 for each t, and so gckf = 0 for each
k, yielding that ghf = 0. Thus gR[x]f = 0, and so R[x] is reflexive. �
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Corollary 3.9. If R is a ring such that R/K(R) is quasi-Armendariz, then
K(R)[x] = K(R[x]).

Proof. By Proposition 3.7, we have K(R)[x] ⊆ K(R[x]). To show the reverse
inclusion, let N = K(R). Since N is reflexive, R/N is a reflexive ring by The-
orem 2.10. Since R/N is quasi-Armendariz, (R/N)[x] is reflexive by Theorem
3.8. Since (R/N)[x] ∼= R[x]/N [x] is reflexive, N [x] is a reflexive ideal of R[x] by
Theorem 2.10, and so N [x] ⊇ K(R[x]) as desired. �
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