• Title/Summary/Keyword: multiple junction

Search Result 82, Processing Time 0.025 seconds

Assessment Methodology of Junction Temperature of Light-Emitting Diodes (LEDs)

  • Chang, Moon-Hwan;Pecht, Michael
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.7-14
    • /
    • 2016
  • High junction temperature directly or indirectly affects the optical performance and reliability of high power LEDs in many ways. This paper is focused on junction temperature characterization of LEDs. High power LEDs (3W) were tested in temperature steps to reach a thermal equilibrium condition between the chamber and the LEDs. The LEDs were generated by pulsed currents with duty ratios (0.091% and 0.061%) in multiple steps from 0mA and 700mA. The diode forward voltages corresponding to the short pulsed currents were monitored to correlate junction temperatures with the forward voltage responses for calibration measurement. In junction temperature measurement, forward voltage responses at different current levels were used to estimate junction temperatures. Finally junction temperatures in multiple steps of currents were estimated in effectively controlled conditions for designing the reliability of LEDs.

A MULTIPHASE LEVEL SET FRAMEWORK FOR IMAGE SEGMENTATION USING GLOBAL AND LOCAL IMAGE FITTING ENERGY

  • TERBISH, DULTUYA;ADIYA, ENKHBOLOR;KANG, MYUNGJOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.2
    • /
    • pp.63-73
    • /
    • 2017
  • Segmenting the image into multiple regions is at the core of image processing. Many segmentation formulations of an images with multiple regions have been suggested over the years. We consider segmentation algorithm based on the multi-phase level set method in this work. Proposed method gives the best result upon other methods found in the references. Moreover it can segment images with intensity inhomogeneity and have multiple junction. We extend our method (GLIF) in [T. Dultuya, and M. Kang, Segmentation with shape prior using global and local image fitting energy, J.KSIAM Vol.18, No.3, 225-244, 2014.] using a multiphase level set formulation to segment images with multiple regions and junction. We test our method on different images and compare the method to other existing methods.

Optimal Design of a Branched Pipe Network with Multiple Sources

  • Lee, Moon-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.10 no.2
    • /
    • pp.17-27
    • /
    • 1984
  • This paper is concerned with a branched pipe network system which transports some fluids or gas from multiple sources to multiple demand nodes. A nonlinear programming model is proposed for determining junction locations simultaneously with selection of pipe sizes and pump capacities such that the capital and operating costs of the system are minimized over a given planning horizon. To solve the model, a hierarchical decomposition method is developed with the junction location being the primary variable. With some values fixed for the primary, the other decision variables are found by linear programming. Then, using the postoptimality analysis of LP, junction locations are adjusted. We repeat this process until an optimum is approached. A simple example of designing a water distribution network is solved to illustrate the optimization procedure developed.

  • PDF

Variation-tolerant Non-volatile Ternary Content Addressable Memory with Magnetic Tunnel Junction

  • Cho, Dooho;Kim, Kyungmin;Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.458-464
    • /
    • 2017
  • A magnetic tunnel junction (MTJ) based ternary content addressable memory (TCAM) is proposed which provides non-volatility. A unit cell of the TCAM has two MTJ's and 4.875 transistors, which allows the realization of TCAM in a small area. The equivalent resistance of parallel connected multiple unit cells is compared with the equivalent resistance of parallel connected multiple reference resistance, which provides the averaging effect of the variations of device characteristics. This averaging effect renders the proposed TCAM to be variation-tolerant. Using 65-nm CMOS model parameters, the operation of the proposed TCAM has been evaluated including the Monte-Carlo simulated variations of the device characteristics, the supply voltage variation, and the temperature variation. With the tunneling magnetoresistance ratio (TMR) of 1.5 and all the variations being included, the error probability of the search operation is found to be smaller than 0.033-%.

Negative Differential Resistance Devices with Ultra-High Peak-to-Valley Current Ratio and Its Multiple Switching Characteristics

  • Shin, Sunhae;Kang, In Man;Kim, Kyung Rok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.546-550
    • /
    • 2013
  • We propose a novel negative differential resistance (NDR) device with ultra-high peak-to-valley current ratio (PVCR) by combining pn junction diode with depletion mode nanowire (NW) transistor, which suppress the valley current with transistor off-leakage level. Band-to-band tunneling (BTBT) Esaki diode with degenerately doped pn junction can provide multiple switching behavior having multi-peak and valley currents. These multiple NDR characteristics can be controlled by doping concentration of tunnel diode and threshold voltage of NW transistor. By designing our NDR device, PVCR can be over $10^4$ at low operation voltage of 0.5 V in a single peak and valley current.

Formation of Chimeric Gap Junction Channels in Mammalian Ovarian Follicle

  • Oh Seunghoon
    • Reproductive and Developmental Biology
    • /
    • v.28 no.3
    • /
    • pp.147-153
    • /
    • 2004
  • The oocyte and its surrounding granulosa cells co-exist in a closed compartment called a follicle, although they receive many signals from other parts of the body. It is well established that the intercellular communications between the oocyte and granulosa cells are required for normal oocyte development and ovulation during folliculogenesis. Gap junctions are intercellular channels allowing the direct transmission of ions and small molecules between coupled cells. Several lines of studies have shown that multiple connexins (Cx, subunits of gap junction) are expressed in mammalian ovarian follicles. Among them, two major connexins Cx37 and Cx43 are expressed in different manner. While the gap junction channels formed by Cx37 are localized between the oocyte and encompassing granulosa cells, the intercellular channels by Cx43 are located between granulosa cells. In this review, I will summarize the general properties of gap junction channels and discuss their possible formation (or compatibility) of intercellular channels formed by the oocyte and granulosa cells.

HERMITE INTERPOLATION USING PH CURVES WITH UNDETERMINED JUNCTION POINTS

  • Kong, Jae-Hoon;Jeong, Seung-Pil;Kim, Gwang-Il
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.175-195
    • /
    • 2012
  • Representing planar Pythagorean hodograph (PH) curves by the complex roots of their hodographs, we standardize Farouki's double cubic method to become the undetermined junction point (UJP) method, and then prove the generic existence of solutions for general $C^1$ Hermite interpolation problems. We also extend the UJP method to solve $C^2$ Hermite interpolation problems with multiple PH cubics, and also prove the generic existence of solutions which consist of triple PH cubics with $C^1$ junction points. Further generalizing the UJP method, we go on to solve $C^2$ Hermite interpolation problems using two PH quintics with a $C^1$ junction point, and we also show the possibility of applying the modi e UJP method to $G^2[C^1]$ Hermite interpolation.

Single-Electron Pass-Transistor Logic with Multiple Tunnel Junctions and Its Hybrid Circuit with MOSFETs

  • Cho, Young-Kyun;Jeong, Yoon-Ha
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.669-672
    • /
    • 2004
  • To improve the operation error caused by the thermal fluctuation of electrons, we propose a novel single-electron pass-transistor logic circuit employing a multiple-tunnel junction (MTJ) scheme and modulate a parameters of an MTJ single-electron tunneling device (SETD) such as the number of tunnel junctions, tunnel resistance, and voltage gain. The operation of a 3-MTJ inverter circuit is simulated at 15 K with parameters $C_g=C_T=C_{clk}=1\;aF,\;R_T=5\;M{\Omega},\;V_{clk}=40\;mV$, and $V_{in}=20\;mV$. Using the SETD/MOSFET hybrid circuit, the charge state output of the proposed MTJ-SETD logic is successfully translated to the voltage state logic.

  • PDF

Physics and current density-voltage characteristics of $a-Si_{1-x}Ge_x:H$ alloy p-i-n solar cells ($a-Si_{1-x}Ge_x:H$ 화합물(化合物) p-i-n 태양전지(太陽電池)의 물리(物理) 및 전류밀도(電流密度)-전압(電壓) 특성(特性))

  • Kwon, Young-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1435-1438
    • /
    • 1994
  • The effects of Ge composition variation in $a-Si_{1-x}Ge_x:H$ alloy p-i-n solar cells on the physical properties and current density-voltage characteristics are analyzed by a new simulation modelling based on the update published experimental datas. The simulation modelling includes newly formulated density of gap density spectrum corresponding to Ge composition variation and utilizes the newly derived generation rate formulars which include the reflection coefficients and can apply to multijunction structures as well as single junction structure. The effects in $a-Si_{1-x}Ge_x:H$ single junction are analyzed through the efficiency, fill factor, open circuit voltage, short circuit current density, free carriers, trap carriers, electric field, generation rate and recombination rate. Based on the results analyzed in single junction structure, the applications to multiple junction structures are discussed and the optimal conditions reaching to a high performance are investigated.

  • PDF

Origin of Multiple Conductance Peaks in Single-Molecule Junction Experiments

  • Park, Min Kyu;Kim, Hu Sung;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.654-654
    • /
    • 2013
  • One of the most important yet unresolved problems in molecular electronics is the controversy over the number and nature of multiple conductance peaks in single-molecule junctions. Currently, there are three competing explanations of this observation: (1) manifestation of different molecule-electrode contact geometries, (2) formation of gauche defects within the molecular core, (3) involvement of different electrode surface orientations [1]. However, the exact origin of multiple conductance peaks is not yet fully understood, which indicates our incomplete understanding of the scientifically as well as techno-logically important organic-metal contacts. To theoretically resolve this problem, we previously applied a multiscale computational approach that combines force fields molecular dynamics (FF MD), density functional theory (DFT), and matrix Green's function (MGF) calculations [2] to a thermally fluctuating haxanedithiol (C6DT) molecule stretched between flat Au(111) electrodes, but could observe only a single conductance peak [3]. In this presentation, using DFT geometry optimizations and MGF calculations, we consider molecular junctions with more realistic molecule-metal contact conformations and Au(111) electrode surface directions. We also conduct DFT-based molecular dynamics for the highly stretched junction models to confirm our conclusion. We conclude that the S-Au coordination number should be the more dominant factor than the electrode surface orientation.

  • PDF