Browse > Article
http://dx.doi.org/10.4134/BKMS.2012.49.1.175

HERMITE INTERPOLATION USING PH CURVES WITH UNDETERMINED JUNCTION POINTS  

Kong, Jae-Hoon (Department of Mathematics GyeongSang National University)
Jeong, Seung-Pil (Department of Mathematics GyeongSang National University)
Kim, Gwang-Il (Department of Mathematics and RINS College of Natural Science GyeongSang National University)
Publication Information
Bulletin of the Korean Mathematical Society / v.49, no.1, 2012 , pp. 175-195 More about this Journal
Abstract
Representing planar Pythagorean hodograph (PH) curves by the complex roots of their hodographs, we standardize Farouki's double cubic method to become the undetermined junction point (UJP) method, and then prove the generic existence of solutions for general $C^1$ Hermite interpolation problems. We also extend the UJP method to solve $C^2$ Hermite interpolation problems with multiple PH cubics, and also prove the generic existence of solutions which consist of triple PH cubics with $C^1$ junction points. Further generalizing the UJP method, we go on to solve $C^2$ Hermite interpolation problems using two PH quintics with a $C^1$ junction point, and we also show the possibility of applying the modi e UJP method to $G^2[C^1]$ Hermite interpolation.
Keywords
Pythagorean hodograph (PH) curve; complex representation; $C^1[C^2]$ Hermite interpolation; $G^2[C^1]$ Hermite interpolation; undetermined junction point (UJP) method;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 H. P. Moon, Minkowsi Pythagorean hodographs, Comput. Aided Geom. Design 25 (2008), no. 4-5, 739-753.
2 F. Pelosi, R. T. Farouki, C. Manni, and A. Sestini, Geometric Hermite interpolation by spatial Pythagorean hodograph cubics, Adv. Comput. Math. 22 (2005), no. 4, 325-352.   DOI   ScienceOn
3 F. Pelosi, M. L. Sampoli, R. T. Farouki, and C. Manni, A control polygon scheme for design of planar $C^{2}$ PH quintic spline curves, Comput. Aided Geom. Design 24 (2007), no. 1, 28-52.   DOI   ScienceOn
4 3H. Pottmann, Curve design with rational Pythagorean-hodograph curves, Adv. Comput. Math. 3 (1995), no. 1-2, 147-170.   DOI   ScienceOn
5 Z. Sir and B. Juttler, Euclidean and Minkowski Pythagorean hodograph curves over planar cubics, Comput. Aided Geom. Design 22 (2005), no. 8, 753-770.   DOI   ScienceOn
6 Z. Sir and B. Juttler, $C^{2}$ Hermite interpolation by Pythagorean hodograph space curves, Mathematics of Computation 76 (2007), no. 259, 1373-1391.   DOI   ScienceOn
7 D. J. Walton and D. S. Meek, A Pythagorean hodograph quintic spiral, Computer-Aided Design 28 (1996), no. 12, 943-950.   DOI   ScienceOn
8 D. J. Walton and D. S. Meek, Geometric Hermite interpolation with Tschirnhausen cubics, J. Comput. Appl. Math. 81 (1997), no. 2, 299-309.   DOI   ScienceOn
9 D. J. Walton and D. S. Meek, $C^{2}$ curve design with a pair of Pythagorean Hodograph quintic spiral segments, Comput. Aided Geom. Design 24 (2007), no. 5, 267-285.   DOI   ScienceOn
10 R. T. Farouki and T. Sakkalis, Pythagorean hodographs, IBM J. Res. Develop. 34 (1990), no. 5, 736-752.   DOI
11 R. T. Farouki and T. Sakkalis, Pythagorean hodograph space curves, Adv. Comput. Math. 2 (1994), no. 1, 41-66.   DOI   ScienceOn
12 R. T. Farouki and S. Shah, Real-time CNC interpolator for Pythagorean hodograph curves, Comput. Aided Geom. Design 13 (1996), 583-600.   DOI   ScienceOn
13 Z. Habib and M. Sakai, $G^{2}$ Pythagorean hodograph quintic transition between two circles with shape control, Comput. Aided Geom. Design 24 (2007), no. 5, 252-266.   DOI   ScienceOn
14 Z. Habib and M. Sakai, Transition between concentric or tangent circles with a single segment of $G^{2}$ PH quintic curve, Comput. Aided Geom. Design 25 (2008), no. 4-5, 247-257.   DOI   ScienceOn
15 B. Juttler, Hermite interpolation by Pythagorean hodograph curves of degree seven, Math. Comp. 70 (2001), no. 235, 1089-1111.   DOI   ScienceOn
16 B. Juttler and C. Maurer, Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling, Computer-Aided Design 31 (1999), 73-83.   DOI   ScienceOn
17 G. I. Kim and M. H. Ahn, $C^{1}$ Hermite interpolation using MPH quartic, Comput. Aided Geom. Design 20 (2003), no. 7, 469-492.   DOI   ScienceOn
18 J. H. Kong, S. P. Jeong, S. Lee, and G. I. Kim, $C^{1}$ Hermite interpolation with simple planar PH curves by speed reparametrization, Comput. Aided Geom. Design 25 (2008), no. 4-5, 214-229.   DOI   ScienceOn
19 G. I. Kim, J. H. Kong, and S. Lee, First order Hermite interpolation with spherical Pythagorean-hodograph curves, J. Appl. Math. Comput. 23 (2007), no. 1-2, 73-86.   DOI
20 G. I. Kim and S. Lee, Pythagorean-hodograph preserving mappings, J. Comput. Appl. Math. 216 (2008), no. 1, 217-226.   DOI   ScienceOn
21 C. Manni, A. Sestini, R. T. Farouki, and C. Y. Han, Characterization and construction of helical polynomial space curves, J. Comput. Appl. Math. 162 (2004), no. 2, 365-392.   DOI   ScienceOn
22 H. I. Choi, C. Y. Han, H. P. Moon, K. H. Roh, and N. S.Wee, Medial axis transformation and offset curves by Minkowski Pythagorean hodograph curves, Computer-Aided Design 31 (1999), 59-72   DOI   ScienceOn
23 H. I. Choi, D. S. Lee, and H. P. Moon, Clifford algebra, spin representation, and rational parametrization of curves and surfaces, Advances in Computational Mathematics 17 (2001), 5-48.   DOI
24 R. T. Farouki, Pythagorean hodograph curves in practical use, Geometry processing for design and manufacturing, 3-33, SIAM, Philadelphia, PA, 1992.
25 R. T. Farouki, The conformal map $z{\rightarrow}z^{2}$ of the hodograph plane, Comput. Aided Geom. Design 11 (1994), no. 4, 363-390.   DOI   ScienceOn
26 R. T. Farouki, The elastic bending energy of Pythagorean-hodograph curves, Comput. Aided Geom. Design 13 (1996), no. 3, 227-241.   DOI   ScienceOn
27 R. T. Farouki, M. Al-Kandari, and T. Sakkalis, Hermite interpolation by rotation- invariant spatial Pythagorean-hodograph curves, Adv. Comput. Math. 17 (2002), no. 4, 369-383.   DOI   ScienceOn
28 R. T. Farouki, J. Manjunathaiah, and G.-F. Yuan, G codes for the specification of Pythagorean-hodograph tool paths and associated feedrate functions on open-architecture CNC machines, International Journal of Machine Tools and Manufacture 39 (1999), 123-142.   DOI   ScienceOn
29 R. T. Farouki and C. Y. Han, Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph curves, Comput. Aided Geom. Design 20 (2003), no. 7, 435-454.   DOI   ScienceOn
30 R. T. Farouki, J. Manjunathaiah, D. Nicholas, G.-F. Yuan, and S. Jee, Variable-feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves, Computer Aided Geometric Design 3 (1998), 631-640.
31 R. T. Farouki and C. A. Neff, Hermite interpolation by Pythagorean-hodograph quintics, Math. Comp. 64 (1995), no. 212, 1589-1609.   DOI   ScienceOn
32 R. T. Farouki and J. Peters, Smooth curve design with double-Tschirnhausen cubics, Ann. Numer. Math. 3 (1996), no. 1-4, 63-82.
33 G. Albrecht and R. T. Farouki, Construction of $C^{2}$Pythagorean-hodograph interpolating splines by the homotopy method, Adv. Comput. Math. 5 (1996), no. 4, 417-442.   DOI   ScienceOn