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HERMITE INTERPOLATION USING PH CURVES WITH

UNDETERMINED JUNCTION POINTS

Jae Hoon Kong, Seung Pil Jeong, and Gwang Il Kim

Abstract. Representing planar Pythagorean hodograph (PH) curves by

the complex roots of their hodographs, we standardize Farouki’s double
cubic method to become the undetermined junction point (UJP) method,
and then prove the generic existence of solutions for general C1 Hermite
interpolation problems. We also extend the UJP method to solve C2

Hermite interpolation problems with multiple PH cubics, and also prove
the generic existence of solutions which consist of triple PH cubics with
C1 junction points. Further generalizing the UJP method, we go on to
solve C2 Hermite interpolation problems using two PH quintics with a C1

junction point, and we also show the possibility of applying the modified
UJP method to G2[C1] Hermite interpolation.

1. Introduction

Pythagorean hodograph (PH) curves are polynomial curves with a poly-
nomial speed function. They were first introduced by Farouki and Sakkalis
[13]. PH curves have several advantages in computing geometric quantities
such as arc-length, curvature and energy. In CAGD (computer aided geomet-
ric design) and CAD (computer aided design), they have been used for rational
offsets, pipe and canal surfaces, CNC (computer numerical control) machining,
interpolation of discrete data, and control of digital motion along curved paths
[4, 11, 15, 9, 10].

In general, PH curves can be completely characterized by expressions in the
Bézier-Bernstein form [13, 5] or by Clifford algebra [3]. In the plane, they can
also be characterized by the complex roots of their hodographs [21]. There has
been a lot of rigorous research on the use of each method of characterization,
for both the planar [28, 31, 32, 12] and spatial cases [14, 7, 19, 24], as well as
results for Minkowski PH (MPH) curves [2, 25, 29]. Early applications were
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based on the representative expressions for PH curves, whereas more recent
works have used tools specific to PH curves, such as PH-preserving mappings
[21, 22] and speed reparameterization [23]. These applications have involved
many Hermite interpolation problems: G1, C1, G2 and C2 interpolation in R2

[11, 32, 12, 23, 1, 18, 8] and R3 [21, 7, 26]; G1 and C1 interpolation in the
Minkowski spaces R1,1, R2,1 and R3,1[2, 29, 20].

Some of these approaches have particular merits because of their algebraic
computability and flexibility in applications. Farouki and Peters [12] solved
C1 Hermite interpolation problems using two consecutive PH cubics with a G1

junction point. They compared C1 PH quintic interpolants with Hermite inter-
polants obtained by the same method after relaxing the C1 Hermite condition
at the junction point; but they provided no proof of the existence of solutions.
Farouki and Albrecht [1] introduced an interesting method for constructing C2

PH interpolating splines, which consist of several piece of PH quintics with C2

junction points; however this approach goes through long complicate compu-
tational processes to solve a global nonlinear system of quadratic equations.
Jüttler [18] introduced another method to solve G2[C1] Hermite interpolation
problems with PH septics, which requires relatively shorter computational pro-
cesses than the previous one. He characterized the condition of a PH curve
geometrically, and used numerical methods to explain the existence of solu-
tions. There have also been several results on C2 PH curves [30, 27] and G2

PH curves [33, 16, 17].
In this paper, we represent PH curves by the complex roots of their hodo-

graphs, and this representation plays a prominent part in the proofs of our main
theorems. Using this representation, we standardize the double cubic method
[12] and prove the existence of a solution for general C1 Hermite interpolation
problems. We call this method the undetermined junction point (UJP). We go
on to extend this method, and show that, for C2 Hermite interpolation prob-
lems, solutions given by triple PH cubics with two C1 junction points exist
generically. Moreover, by generalizing our extended method even further, we
show that it can be applied to several geometric Hermite interpolation prob-
lems with diverse boundary conditions, such as G2 Hermite interpolation and
G2[C1] Hermite interpolation [18], including C2 interpolation. For example,
we show that solutions of G2[C1] Hermite interpolation problems, using PH
curves with PH quintics and an undetermined junction point, exist generically
with a curvature discontinuity at a single point. Moreover, we also show that,
by manipulating the acceleration components of the boundary conditions, the
curvature discontinuity at the junction point might be removed empirically and
a smooth G2[C1] interpolant can be obtained.

2. Characterization of plane PH curves by hodograph roots

In general, there are many ways of characterizing planar PH curves, using
the Bézier-Berstein form, the complex roots of their hodographs, or Clifford al-
gebra. In this paper, we use the complex representation introduced by Farouki



HERMITE INTERPOLATION USING PH CURVES 177

[13], which is α(t) = u(t)+ i v(t) instead of α(t) = (u(t), v(t)). This representa-
tion allows us to regard PH curves as complex-valued polynomials. Moreover,
we can restate the definition of PH curve and characterize PH curves using
their hodograph roots as follows:

Definition 1. Let α(t) = u(t) + iv(t) be a plane curve, in which u(t) and v(t)
are real polynomials. Then α(t) is called a Pythagorean-hodograph curve (PH
curve) if and only if there exists a polynomial σ(t) such that ∥ α′(t) ∥2= σ(t)2;
where ∥ ∥ signifies the complex norm.

Theorem 2.1 ([21]). A polynomial curve of degree n is a Pythagorean hodo-
graph curve if and only if its hodograph has only real roots and pairs of complex
roots, of which one is equal or conjugate to the other.

Remark 2.2. A polynomial curve α(t) = u(t) + i v(t) is said to be regular if
∥α′(t)∥≠ 0 for all t. Thus, α(t) is regular if α′(t) has no real root. In addition, if
α′(t) has only non-real complex roots of even multiplicity, of which any two are
not conjugate mutually, then the complex polynomial α′(t) has no real factor
polynomial (that is, u′(t) and v′(t) are relatively prime). In this case, we say
that α(t) is regular if its hodograph has no real root, and strongly regular if the
hodograph has only non-real complex roots of even multiplicity, of which any
two are not mutually conjugate. For example, the general strongly regular PH
cubics can be written as

∫
k(t−c)2dt, where c is a non-real complex number and

k is a constant complex number. The general strongly regular PH quintics are
written

∫
k(t− c1)

2(t− c2)
2dt, where c1 and c2 are non-real complex numbers

which are not mutually conjugate.

Note that, we deal with strongly regular PH curves throughout this paper.

3. C1 Hermite interpolation using PH cubic curves of type∫
k(t − c)2dt with an undetermined C1 junction point

PH cubics have several merits in many practical applications for curve de-
sign, which stem from the nice properties of their geometric shape and their
algebraic advantages in computation. So, there have been diverse researches
using them [32, 12, 29, 26]. A disadvantage of PH cubics is that they have only
six degrees of freedom. This largely restricts their applicability to G1 Hermite
interpolation problems. We cannot use PH cubics to solve general C1 Hermite
interpolation problems, because C1 Hermite data imposes more constraints
than the degree of freedom of interpolants. We can use PH quintics which
have eight degrees of freedom; but there have been some attempts to overcome
this weak point [12, 23, 1]. In particular, Farouki and Peters [12] compared
the effectiveness of double cubic interpolants and PH quintic interpolants in
satisfying C1 data. We standardize this method and provide the missing proof
of the generic existence of a solution, together with a singularity analysis and
some examples.
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We begin by noting that we will use the complex representation of a PH
curve, so that all the elements of Hermite data will be complex numbers. For
example, we use the complex numbers P0 and P1 to denote the starting and the
ending points of interpolants, while their starting and terminal velocities are the
complex numbers V0 and V1. Thus, a C

1 Hermite dataH1
C is expressed asH1

C =
{P0, P1, V0, V1}. C2 Hermite data requires the additional complex numbers A0

and A1 to denote the accelerations of the interpolants at the end-points. Thus,
a C2 Hermite data H2

C can be expressed as H2
C = {P0, P1, V0, V1, A0, A1}.

Definition 2. Let α : [0, 1] → R2 and β : [0, 1] → R2 be two continuous
plane curves. A point Q is called the C 0 junction point of α(t) and β(t) if
α(1) = Q = β(0).

Remark 3.1. The precise type of a junction point of two curves is determined
by the smoothness of the junction. For example, if the curves have the same
velocity at the junction point, it is called a C1 junction.

Theorem 3.2. For a given C1 Hermite data H1
C = {P0, P1, V0, V1}, there

generically exist four interpolants, each of which consists of two PH cubics
with a C1 junction point.

Proof. Let α(t) and β(t) be PH cubics. By Theorem 2.1 and Remark 2.2, they
are given by α(t) = 1

3k1(t−c1)
3+d1 and β(t) = 1

3k2(t−c2)
3+d2. Assume that

α(t) and β(t) comprise an interpolant for the Hermite data H1
C with a velocity

vector W and a C1 junction point Q. Then, since we have

α(0) = P0 , α(1) = Q = β(0) , β(1) = P1,

α′(0) = V0 , α
′(1) = W = β′(0) , β′(1) = V1,

we obtain

P0 = −1
3k1c

3
1 + d1 , P1 = 1

3k2(1− c2)
3 + d2,(1)

Q = 1
3k1(1− c1)

3 + d1 , Q = − 1
3k2c

3
2 + d2,(2)

V0 = k1c
2
1 , V1 = k2(1− c2)

2,(3)

W = k1(1− c1)
2 , W = k2c

2
2.(4)

Next, by eliminating k1 and k2 in (3) and (4), we obtain

W = (
c1 − 1

c1
)2V0,(5)

W = (
c2

c2 − 1
)2V1.(6)

We eliminate d, from (1) and (2), and then use k1 = V0

c21
, from (3), and obtain

Q =
V0(1− 3c1 + 3c21)

3c21
+ P0.(7)
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Similarly, using k2 = V1

(1−c2)2
, we can obtain

Q =
−V1(1− 3c2 + 3c22)

3(c2 − 1)2
+ P1.(8)

By substituting (3) into (1), we obtain

d1 = 1
3V0c1 + P0,

d2 = 1
3V1(c2 − 1) + P1.

Thus, by eliminating W from (5) and (6), we have

c2 =
V∗(c1 − 1)

V∗(c1 − 1)− c1
, where V∗ = ±

√
V0

V1
.(9)

Finally, substituting (9) into (8), and eliminating Q from (7) and (8), we get

c1 =
4V0

5V0 + V1V∗ ±
√
D
,(10)

where D = −7V 2
0 +25V0V1+10V0V1V∗−24(P0−P1)V0. Also, by substituting

(10) into (9), we obtain

c2 =
−4V0

5V0 + V0V∗ ± V∗
√
D

+ 1.(11)

From (9), (10) and (11), we can derive four possible pairs of c1 and c2, each of
which generates one possible interpolant. This completes the proof. □

Example 1. Consider a C1 Hermite data H1
C given by {0, 10, 1 + 2i, 1 − i}.

Let α(t) and β(t) be PH cubics satisfying α(0) = 0, β(1) = 10, α′(0) = 1 + 2i
and β′(1) = 1 − i, with an undetermined C1 junction point Q, so that Q =
α(1) = β(0) and α′(1) = β′(0). Then, from using (10) and (11), we can obtain
four pairs of hodograph roots c1j , c2j of the PH cubics as follows:

(c11 = −0.378471882− 0.590246678i, c21 = 1.479887368− 0.290164571i),

(c12 = −0.300968879− 0.470234115i, c22 = 0.761079611 + 0.053724378i),

(c13 = 0.240110218 + 0.104424060i, c23 = 0.794270176 + 0.067086763i),

(c14 = 0.272617369 + 0.100007301i, c24 = 1.342568704− 0.260100907i).

We can also obtain the junction points from (8):

Q1 = 5.120400906 + 0.157057522i,

Q2 = 6.477112829 + 0.555724635i,

Q3 = 4.879599093− 0.407057522i,

Q4 = 3.522887166 + 0.194275368i,

which correspond to the previous cases, in order.



180 JAE HOON KONG, SEUNG PIL JEONG, AND GWANG IL KIM

Thus, as shown in Figure 1-(a), we can get four interpolants, each of which
consists of two PH cubics αj and βj with the C1 junction point Qj as follows:

α1(t) = (t+ 3.171t2 + 0.949t3) + (2t+ 0.339t2 − 1.182t3) i,

β1(t) = (5.120 + 10.190t− 6.742t2 + 1.431t3)

+ (1.157− 0.868t− 0.735t2 + 0.446t3) i,

α2(t) = (t+ 3.983t2 + 1.494t3) + (2t+ 0.423t2 − 1.867t3) i,

β2(t) = (6.477 + 13.449t− 17.328t2 + 7.403t3)

+ (0.556− 2.755t+ 4.844t2 − 2.644t3) i,

α3(t) = (t− 6.549t2 + 10.428t3) + (2t− 5.481t2 + 3.074t3) i,

β3(t) = (4.880 + 19.187t− 24.014t2 + 9.947t3)

+ (−0.407 + 0.260t+ 1.701t2 − 1.554t3) i,

α4(t) = (t− 5.605t2 + 8.128t3) + (2t− 5.280t2 + 3.474t3) i,

β4(t) = (3.523 + 14.174t− 9.916t2 + 2.220t3)

+ (0.194 + 1.863t− 3.309t2 + 1.251t3) i,

where the component curves αj and βj of each interpolant are determined by
the values of the roots (c1j and c2j ).

Table 1. Bending energy comparison of the UJP interpolants
and the PH quintic interpolants for the C1 Hermite data
{0, 10, 1 + 2i, 1− i}.

j (a) UJP method (b) PH quintic
1 0.822 2.419
2 1289.217 3420.961
3 643.161 453.832
4 178.070 1563.548

Moreover, comparing these four interpolants with the ones given by PH
quintics [11] for the same C1 Hermite data (see Figure 1-(b)), as shown Figure
1-(c) and in Table 1, we can obtain an UJP interpolant with better shape than
the best PH quintic interpolant, in the sense that it has lower bending energy
which is defined by

∫
γ
κ2ds where γ is a plane curve and κ is the curvature

function of γ (for details, see [6]).

Remark 3.3. In general, a C1 Hermite interpolant has the parameter domain
of length 1, for example, [0, 1]. But all the interpolants in Example 1 have that
of length 2. This is caused by the process joining two consecutive interpolants.
However, by the following technical modification with three simple steps, for a
given C1 Hermite data, we can automatically obtain the PH interpolants with
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(a) (b)

(c)

Figure 1. (a) shows four possible interpolants obtained by
the UJP method for a C1 Hermite data {0, 10, 1 + 2i, 1 − i},
and (b) shows four possible PH quintic interpolants for the
same Hermite data. Each interpolant in (a) is annotated by
a number of 1, 2, 3, 4 assigned to the index j in Example 1,
and in (b) the annotating numbers are arbitrarily assigned.
(c) shows both best interpolants respectively selected from (a)
and (b), which their bending energies are compared in Table
1.

the general parameter domain: First, we modify the given C1 Hermite data
to a new C1 Hermite data by reducing the size of tangent data by half. Next,
using Theorem 3.2, we obtain the Hermite interpolants with two consecutive
PH curves, as shown in Example 1, satisfying the new Hermite data. Finally,
we replace the parameter t of each piecewise interpolant with 2 t and reassume
t ∈ [0, 1

2 ]. For example, applying this modification to the Hermite data H1
C =

{0, 10, 1+2i, 1−i} in Example 1, we can obtain four new Hermite interpolants
with the general parameter domain, which are shown in Figure 2. In next
examples, we do not mention especially about this modification any more,
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since the first and final steps of the modification are routine and automatical
as you see. However, it is necessary to note that the change of the parameter
domain might cause the change of the shape of interpolant (Compare Figure
1-(a) and Figure 2).

Figure 2. Four interpolants obtained by the technical mod-
ification introduced in Remark 3.3 for the C1 Hermite data
H1

C = {0, 10, 1 + 2i, 1− i} in Example 1.

Remark 3.4. As shown in Example 1, each C1 UJP interpolant consists of
two PH cubics. A strongly regular PH cubic should be a simple curve or a
loop. Thus the C1 UJP interpolant must be a combination of them. This
means that, for a given C1 Hermite data, there are four possible interpolants,
and moreover that we can always obtain an interpolant which consists of two
simple curves. This interpolant generically has the best shape in the UJP
interpolants. Furthermore, by using the speed reparametrization method [23],
we might obtain some C1 UJP interpolants with bending energy as lower as
possible.

Remark 3.5. Theorem 3.2 proves the generic existence of a solution using the
UJP method. This leaves the possibility that the method may not work for
some singular C1 Hermite data, even though the probability of this situa-
tion occurring is zero. For example, consider the C1 Hermite data H1

C =

{P0, P1, V0, V1}, where −4V0

5V0+V0V∗±V∗
√
D

+ 1 = 0, V∗ = ±
√

V0

V1
and D = −7V 2

0 +

25V0V1+10V0V1V∗−24(P0−P1)V0. Then from (6), (9) and (11) we have c2 = 0,
which is equivalent to c1 = 1, and the UJP method does not work. However, we
can deal with these unlikely irregular cases by speed reparametrization. This
removes the singularity, and allows the UJP method to work normally. The
details are explained in the following example.

Example 2. Let H1
C be a C1 Hermite data given by {0, 1, 1 + i, 2 − i}, and

let α(t) and β(t) be PH cubics satisfying α(0) = 0, β(1) = 1, α′(0) = 1 + i
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and β′(1) = 2 − i. In this case, four possible pairs of special hodograph roots
(c1 = 1, c2 = 0) exist, which implies that there is a singularity, so that the
speed at the junction point is zero and the leading coefficients of the PH cubics
diverge, so that the UJP method cannot work. However, by modifying H1

C

to become {0, 1, 1 + i, 0.25 − 0.125i}, so that β′(1) = 0.25 − 0.125i instead of
β′(1) = 2 − i, we can simply remove the singularity. We can then obtain the
following four pairs of non-singular hodograph roots c1j , c2j :

(c11 = 0.450171908 + 0.115872146i, c21 = 0.732352065 + 0.032442086i),

(c12 = 0.519076683 + 0.114005772i, c22 = 1.843351090− 0.290767642i),

(c13 = 0.932131908− 1.032326277i, c23 = 0.626815215− 0.041193814i),

(c14 = 1.144864477− 0.779131387i, c24 = 3.297481630 + 1.799519369i).

Moreover, by applying the speed reparametrization method introduced by Kong
et al [23]. We can finally obtain the four regular interpolants, shown in Figure
3, which satisfy the original C1 Hermite data H1

C .

Figure 3. Four regular interpolants obtained by applying
the speed reparametrization method to the C1 Hermite data
{0, 1, 1+ i, 2− i} in Example 2, by changing the final speed of
β from 2− i to 0.25− 0.125i. The interpolants are determined
by the hodograph roots c1j and c2j when j = 1, 2, 3 and 4
respectively. The interpolant denoted by the thick lines is the
interpolant with best shape, i.e., the lowest bending energy.

4. C2 Hermite interpolation using PH cubic curves of type∫
k(t − c)2dt with three C1 undetermined junction points

The UJP method introduced in the previous section provides a new insight
into solving Hermite interpolation problems. Previous method of solving these
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problem use a suitable single target curve with a moderate degree of freedom
to match a given Hermite data. But the UJP method uses a special unit,
consisting of multiple piecewise interpolants and their junction points, which
satisfy specific constraints. For example, in the previous section, we used a
unit made up of two piecewise PH cubics and one C1 junction point.

This suggests a more general insight into tackling Hermite interpolation
problems: If we use a special unit which consists of some specially designed
piecewise interpolants and their junction points, there is hardly any need to
handle curves of high degree, and we can find solutions consisting of piecewise
curves of as low degree as possible, together with suitably designed junction
points. In this section and the next, we present two extensive generalization of
the UJP method.

First, we consider a modification of the UJP method to solve C2 Hermite
interpolation problems.

Theorem 4.1. For a C2 Hermite data H2
C = {P0, P1, V0, V1, A0, A1}, there

generically exist four possible interpolants, each of which consists of four PH
cubics with their three C1 junction points.

Proof. Let α(t) = k1(t−c1)
3+d1, β(t) = k2(t−c2)

3+d2, γ(t) = k3(t−c3)
3+d3

and δ(t) = k4(t − c4)
3 + d4 be four PH cubic curves of type

∫
k(t − c)2dt,

which are joined in order at three C1 junction points. We will denote these
undetermined junction points as Qj (j = 1, 2, 3) and the velocities at the
junction points will be written Wj (j = 1, 2, 3). If this sequence of curves
satisfies the C2 Hermite data H2

C = {P0, P1, V0, V1, A0, A1}, such that α(0) =
P0, α(1) = β(0) = Q1, β(1) = γ(0) = Q2, α

′(0) = V0, α
′(1) = β′(0) = W1,

β′(1) = γ′(0) = W2, γ(1) = δ(0) = Q3, δ(1) = P1, γ′(1) = δ′(0) = W3,
δ′(1) = V1, α

′′(0) = A0 and β′′(1) = A1. Then we have the followings:

− k1c
3
1 + d1 = P0, k1(1− c1)

3 + d1 = −k2c
3
2 + d2 = Q1, k1c

2
1 = V0,(12)

k2(1− c2)
3 + d2 = −k3c

3
3 + d3 = Q2, k1(1− c1)

2 = k2c
2
2 = W1,(13)

k2(1− c2)
2 = k3c

2
3 = W2, k3(1− c3)

3 + d3 = −k4c
3
4 + d4 = Q3,(14)

k4(1− c4)
3 + d4 = P1, k3(1− c3)

2 = k4c
2
4 = W3,(15)

k4(1− c4)
2 = V1, −2k1c1 = A0, 2k4(1− c4) = A1.(16)

First, from (12), (13) and (14), we can obtain

W1 = (
1− c1
c1

)2V0, W2 = (
1− c2
c2

)2W1,(17)

Q1 =
(1− 3c1 + 3c21)V0

3c21
+ P0, Q2 =

(1− 3c2 + 3c22)W1

3c22
+Q1,(18)

and from (14), (15) and (16), we also obtain

W2 = (
c3

1− c3
)2W3, W3 = (

c4
1− c4

)2V1,(19)
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Q3 =
(1− 3c3 + 3c23)W2

3c23
+Q2, P1 =

(1− 3c4 + 3c24)W3

3c24
+Q3.(20)

Next, from (12) and (16), we get

c1 = −2V0

A0
, c4 = 1− 2V1

A1
,(21)

and from (17) and (19), we also get

(
1− c1
c1

)2(
1− c2
c2

)2V0 = (
c3

1− c3
)2(

c4
1− c4

)2V1.(22)

Additionally, by using (18), (20) and (17), (19) in pairs, we get

(1− 3c1 + 3c21)V0

c21
+

(1− 3c2 + 3c22)W1

c22

+
(1− 3c3 + 3c23)W2

c23
+

(1− 3c4 + 3c24)W3

c24
= 3(P1 − P0),

(23)

and W1 = ( 1−c1
c1

)2V0, W2 = ( c3
1−c3

)2( c4
1−c4

)2V1, W3 = ( c4
1−c4

)2V1.

Let η = 1
c2
, θ = 1

1−c3
. Then, from (21), (22) and (23), we get

(
A0

2V0
+ 1)2V0(η − 1)2 = (

A1

2V1
− 1)2V1(θ − 1)2,(24)

(
A0

2V0
+ 1)2V0(η

2 − 3η + l1) + (
A1

2V1
− 1)2V1(θ

2 − 3θ + l2) = 3(P1 − P0),(25)

where l1 = 5 + A0

2V0
, l2 = 6 + A1(6V1−2A1)

(A1−2V1)2
. In addition, let l3 = ( A0

2V0
+ 1)2V0,

l4 = ( A1

2V1
− 1)2V1 and l5 = 3(P1 −P0). Then from(24) and (25), we obtain two

complex polynomials in the variables η and θ, as follows;

l3(η − 1)2 = l4(θ − 1)2,(26)

l3(η
2 − 3η + l1) + l4(θ

2 − 3θ + l2) = l5.(27)

We can rewrite (26) as η = 1±
√

l4
l3
(θ− 1) and, by substituting η into (27), we

finally obtain

2l4θ
2 − (5l4 ±

√
l3l4)θ + (l4 + l4l2 + l3l1 − 2l3 ±

√
l3l4 − l5) = 0.(28)

Solving this equation over the complex number field C, we generically obtain
two complex roots. This completes the proof. □

Example 3. Let H2
C be a C2 Hermite data given by H2

C = {1 + i, 10 + i, 2 +
i, 1− 2i, 1+ 2i, 2+ 3i}, and let α(t) = k1(t− c1)

3 + d1, β(t) = k2(t− c2)
3 + d2,

γ(t) = k3(t−c3)
3+d3 and δ(t) = k4(t−c4)

3+d4 be PH cubics which constitute
an interpolant with three C1 junction points Qj (j = 1, 2, 3) that satisfy H2

C

in the same order. Then, solving (28) for the Hermite data H2
C , we get four

possible values of θj (j = 1, 2, 3, 4), as follows;

θ1 = 0.6783026555− 1.478305562i, θ2 = 1.899534833 + 1.504361588i,
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θ3 = 0.6509730649− 1.049792872i, θ4 = 1.771189827 + 1.023736913i.

Table 2. Four possible families of C1 junction points.

j Q1j Q2j Q3j

1 3.467 + 3.183i 5.894 + 5.209i 10.483 + 4.467i
2 3.467 + 3.183i 7.415 + 3.238i 10.483 + 4.467i
3 3.467 + 3.183i 7.873 + 6.525i 10.483 + 4.467i
4 3.467 + 3.183i 9.393 + 4.553i 10.483 + 4.467i

Table 3. Four possible families of parameters which deter-
mine all the PH cubics from each interpolant.

m 1

j 1 2 3 4
kjm −0.033 + 0.183i 7.806 + 7.370i −1.867 + 4.456i −0.483 + 0.033i
cjm −1.600 + 1.200i 0.376 + 0.024i 0.744− 0.559i 1.615 + 1.077i
djm −0.467 + 1.267i 3.802 + 3.652i 9.780 + 5.342i 10.923 + 0.949i

m 2

j 1 2 3 4
kjm −0.033 + 0.183i 11.828 + 3.935i 8.236− 6.864i −0.483 + 0.033i
cjm −1.600 + 1.200i 0.336 + 0.098i 0.676 + 0.256i 1.615 + 1.077i
djm −0.467 + 1.267i 3.676 + 3.676i 11.166 + 4.786i 10.923 + 0.949i

m 3

j 1 2 3 4
kjm −0.033 + 0.183i 0.080− 0.125i −1.678 + 2.224i −0.483 + 0.033i
cjm −1.600 + 1.200i −1.881− 2.599i 0.573− 0.688i 1.615 + 1.077i
djm −0.467 + 1.267i 4.637 + 1.493i 11.228 + 4.958i 10.923 + 0.949i

m 4

j 1 2 3 4
kjm −0.033 + 0.183i −0.105− 0.838i 4.217− 6.374i −0.483 + 0.033i
cjm −1.600 + 1.200i −0.372− 1.293i 0.577 + 0.245i 1.615 + 1.077i
djm −0.467 + 1.267i 4.723− 1.555i 9.708 + 5.725i 10.923 + 0.949i

We are now able to use the equations for kj , cj , dj and Q jm (j = 1, 2, 3, 4;
m = 1, 2, 3) in the proof of Theorem 4.1 to obtain four interpolants, each of
which consists of four PH cubics αj , βj , γj and δj , with three C1 junction
points Q jm (m = 1, 2, 3) for each j (j = 1, 2, 3, 4) as shown in Tables 2 and 3.

Consequently, for the Hermite data H2
C , we can obtain the four interpolants;

one interpolant which consists of two simple curves and three interpolants which
includes at least one loop, as shown in Figure 4.

Remark 4.2. As stated in Remark 3.5 and shown in Example 2, a regular inter-
polant may not exist for some C2 Hermite data, even though the probability
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(a) (b)

(c) (d)

Figure 4. Four interpolants obtained by the UJP method
using four PH cubics with three C1 junction points for the C2

Hermite data H2
C = {1 + i, 10 + i, 2 + i, 1− 2i, 1 + 2i, 2 + 3i}.

Subfigures (a), (b), (c), (d) respectively show the interpolants
determined by θj in Example 3, when j = 1, 2, 3 and 4. The
interpolant with best shape which consists of two simple curves
is shown in (c).

of this is zero. But, in this case, we can again remove the singularity by speed
reparametrization.
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5. C2 Hermite interpolation using PH quintics with an
undetermined C1 junction point

The method introduced in the previous section, to solve C2 Hermite interpo-
lation problems using PH cubics with three C1 junction points, seems to have
two weaknesses: one is that it needs several PH cubics and junction points,
and the other is that each of the PH cubic interpolants might have a curvature
discontinuity at its junction points. We can improve the UJP method using
PH cubics to address these issues by introducing a further modification of the
UJP method for a C2 Hermite data in which each interpolant is constructed
from two PH quintics and a C1 junction point. We can also apply this modified
method to the G2[C1] Hermite interpolation technique introduced by Jüttler
[18].

First, we modify the UJP method to use two PH quintics with a C1 junction
point.

Theorem 5.1. For a C2 Hermite data H2
C = {P0, P1, V0, V1, A0, A1}, there

generically exist four interpolants, each of which consists of two PH quintics
with a C1 junction point.

Proof. Let H2
C = {P0, P1, V0, V1, A0, A1} be a C2 Hermite data and let α′(t) =∫ t

0
k1(τ − c1)

2(τ − c2)
2dτ +d1 and β′(t) =

∫ t

0
k1(τ − c3)

2(τ − c4)
2dτ +d2 be PH

quintics with a C1 junction point Q, that satisfy H2
C , in the same order.

Then, since α(0) = P0, α(1) = β(0) = Q, β(1) = P1, α
′(0) = V0, α

′(1) =
β′(0) = W , β′(1) = V1, α

′′(0) = A0 and β′′(1) = A1, we have

d1 = P0,

k1
30

(6− 15x1 + 10x2
1 + 20y1 − 30x1y1 + 30y21) + d1 = d2 = Q,(29)

k2
30

(6− 15x2 + 10x2
2 + 20y2 − 30x2y2 + 30y22) + d2 = P1,(30)

k1y
2
1 = V0,(31)

k1(1− x1 + y1)
2 = k2y

2
2 ,(32)

k2(1− x2 + y2)
2 = V1,(33)

− 2k1x1y1 = A0,(34)

2k2(1− x2 + y2)(2− x2) = A1,(35)

where x1 = c1 + c2, y1 = c1c2, x2 = c3 + c4 and y2 = c3c4.
From (31), (32) and (33), we can obtain

V0(1− x1 + y1)
2

y21
=

V1y
2
2

(1− x2 + y2)2
,(36)

and from (31), (34) and (33), (35), we get

y1 = −2V0x1

A0
,(37)
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y2 =
4V1 + (A1 − 2V1)x2 −A1

A1
.(38)

In addition, from (29), (30), (31) and (32), we also obtain

V1f(x2, y2)

30(1− x2 + y2)2
+

V0f(x1, y1)

30y21
= P1 − P0,(39)

where f(x, y) = 6− 15x+ 10x2 + 20y − 30xy + 30y2.
Next, using (37) and (38), we solve (36) for x1, which yields

x1 =
ax2 + b

cx2 + d
,(40)

where a = A0V1

√
V0, b = −2A0V0

√
V1, c = A0V1

√
V0−2V0V1

√
V1+2V0V1

√
V0+

A1V0

√
V1 and d = −2A0V1

√
V 0+4V0V1

√
V1−4V0V1

√
V0−A1V0

√
V 1. We can

then substitute (37) and (38) into (39). Combining this modified version of
(39) with (40), we obtain a complex polynomial equation of degree 4 in x2.
By solving this equation, we can generically find four complex roots. This
completes the proof. □

Example 4. Let H2
C be the C2 Hermite data given by H2

C = {0, 5, 1 + 3i, 2−
i, 1 + 2i, 1 + i}, and let α(t) =

∫ t

0
k1(τ − c1)

2(τ − c2)
2dτ + d1 and β(t) =∫ t

0
k1(τ − c3)

2(τ − c4)
2dτ + d2 be, in the same order, PH quintics with a C1

junction point satisfying H2
C . Then, for x1 = c1 + c2, y1 = c1c2, x2 = c3 + c4

and y2 = c3c4, we have

k1 =
1 + 3i

y21
, k2 =

2− i

(1− x2 + y2)2
, d1 = 0,

d2 =
1 + 3i

30y21
(6− 15x1 + 10x2

1 + 20y1 − 30x1y1 + 30y21),

y1 = −2(1 + 3i)x1

1 + 2i
,(41)

y2 =
4(2− i) + (1 + i− 2(2− i))x2 − 1− i

1 + i
.(42)

Substituting (41) and (42) into (36) and (39), by solving them simultaneously,
we obtain four pairs of solutions x1j , x2j (j = 1, 2, 3, 4), as follows:

(x11 = 0.0967498 + 0.0297784i, x21 = 2.0323700 + 0.0814393i),

(x12 = 0.0384257− 0.2473143i, x22 = 2.0143658 + 0.1065499i),

(x13 = 0.1341668− 0.2903794i, x23 = 1.6683614− 0.4090775i),

(x14 = 0.1184077 + 0.0256385i, x24 = 1.8013613− 0.1359923i),

from which we can also obtain four interpolants, each consisting of two PH
quintics with a C1 junction point that satisfies H2

C , as shown in Figure 5.

Now, we will consider how to apply the modified UJP method introduced
in this section to G2[C1] Hermite interpolation problems. But, we first note
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(a) (b)

(c) (d)

Figure 5. Four interpolants satisfying H2
C = {0, 5, 1+3i, 2−

i, 1 + 2i, 1 + i}, each consisting of two PH quintics and their
C1 junction point. Subfigures (a), (b), (c) and (d) show the
interpolants determined by pairs of solutions x1j and x2j in Ex-
ample 4, when j = 1, 2, 3 and 4, respectively. The interpolant
with best shape which consists of two simple PH quintics is
shown in (c).

a potential drawback of this modified method, which is that the curvature
function of each interpolant might have a discontinuity at its junction point. To
proceed with this application, we therefore need another technique to eliminate
this discontinuity. In the following example, we propose an empirical technique
for this purpose.

Example 5. Consider a G2[C1] Hermite data HG2[C1] = {P0 = 0, P1 = 5, V0 =
1 + 3i, V1 = 2− i, κ0 = 0.1, κ1 = −0.2}, where κ0 and κ1 respectively are the
boundary curvatures of the target interpolants when t = 0, 1. Let us also
consider another C2 Hermite data H2

C = {P0 = 0, P1 = 5, V0 = 1 + 3i, V1 =

2 − i, A0, A1}, where A0 = λ0
1+3i

∥1+3i∥ +
√
10 κ0

−3+i
∥−3+i∥ and A1 = λ1

2−i
∥2−i∥ +

√
5 κ1

1−2i
∥1−2i∥ . Then, by Theorem 5.1, for each given λ0 and λ1, as shown in
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Figure 6 where λ0 = 0.5 and λ1 = 1, we can obtain four interpolants, each of
which consists of two PH quintics with a C1 junction point satisfying H2

C . Let
α(t) be an interpolant satisfying H2

C for each λ0 and λ1, and let T and N be
the unit tangent vector field and the unit normal vector field on α(t). Then,
since α′(t) = v(t)T (t) for v(t) =∥ α′(t) ∥, we have α′′(t) = v′(t)T (t)+v(t)dTdt =

v′(t)T (t)+ v(t)2κ(t)N(t) by the Frenet theorem. This means that α(t) has the
boundary curvatures κ0 and κ1 for any λ0 and λ1. This also implies that α(t)
is an interpolant that will satisfy HG2[C1] for all λ0 and λ1.

(a) (b)

(c) (d)

Figure 6. Four possible G2[C1] interpolants obtained by
the modified UJP method using two PH quintics, for a G2[C1]
Hermite data-set HG2[C1] = {0, 5i, 1+ 3i, 2− i, κ0 = 0.1 , κ1 =
−0.2}, when λ0 = 0.5 and λ1 = 1. The interpolant with best
shape is shown in (c).

However, in general, the curvatures of both the PH quintics of each inter-
polant satisfying H2

C are not equal at the junction point, as shown in Table



192 JAE HOON KONG, SEUNG PIL JEONG, AND GWANG IL KIM

4. This means that curvature continuity at the junction point is not always
guaranteed.

Table 4. Comparison of the left curvature κleft and the
right curvature κright of each interpolant shown in Figure 6.

κleft κright

(a) 0.073 0.006
(b) −0.205 −0.037
(c) −0.503 0.093
(d) 0.180 −0.015

To remove the curvature discontinuity at the junction point, we propose
an additional empirical technique. We first recall from the preceding para-
graph that all interpolants satisfying a C2 Hermite data H2

C must also satisfy
the G2[C1] Hermite data HG2[C1] = {P0, P1, V0, V1, κ0, κ1}, if the acceleration
vectors A0 and A1 are given, for parameters λ0 and λ1, as follows:

A0 = λ0T0 + v0κ0N0 and A1 = λ1T1 + v1κ1N1,

where vj =∥ Vj ∥, Tj = T (j) and Nj = N(j)) (j = 0, 1). So, by changing
the parameters λ0 and λ1 (although in this example, we will only change the
parameter λ0) over R, and by applying the modified UJP method to each C2

Hermite data H2
C , we can change the curvatures of the two PH quintics of

each interpolant at the junction point, while continuing to satisfy HG2[C1]. We
repeat this procedure until the curvatures of the two PH quintics comprising
the interpolant are equal at the junction point. All being well, we can now at
last obtain the interpolant without a curvature discontinuity at the junction
point.

As an exercise, we will apply this technique to the interpolant shown in
Figure 6-(c). Figure 7-(a) and (b) show that the curvature inequality between
the two PH quintics of the interpolant can be reversed. This means that the
technique works, equivalently, that there exists a G2[C1] interpolant satisfying
HG2[C1] with curvature continuity at the junction point. When λ0 = −12.989,

we can approximate the G2[C1] Hermite interpolant without the curvature
discontinuity numerically, and we see that it satisfies HG2[C1], as shown in
Figure 7-(c).

6. Concluding remarks and suggestions for further study

We have introduced Hermite interpolation techniques that use planar PH
curves represented by the complex roots of their hodographs. First, we stan-
dardized the double cubic method introduced by Farouki to become the new
UJP method, and gave a proof of the generic existence of solutions to general
C1 Hermite interpolation problems. In addition, we extended the UJP method
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(a) (b)

(c)

Figure 7. Reversal of the curvature inequality is observed
only as the parameter λ0 is varied from 0.5 to −14, while
keeping λ1 at 1, with an interpolant constructed from two PH
quintics of the same type, as shown in Figure 6-(c), and an
interpolant determined numerically with a sufficiently small
curvature difference at the junction point: (a) shows the in-
terpolant with κleft = −0.503, κright = 0.093 when λ0 = 0.5;
(b) shows the interpolant with κleft = 0.001, κright = −0.022
when λ0 = −14; and (c) shows the interpolant with κleft =
−0.018180, κright = −0.018183 when λ0 = −12.989.

to solve C2 Hermite interpolation problems with multiple PH cubics and also
proved the generic existence of a solution which consists of triple PH cubics
with C1 junction points. Also, by further generalization of the UJP method,
we solved C2 Hermite interpolation problems using two PH quintics with a C1

junction point. In addition, we showed the possibility of applying the modified
method to G2[C1] Hermite interpolation problems.

We can suggest directions for further study. First is the shape analysis of
the interpolants obtained by the UJP method, and related topics such as a
complete theoretical understanding of the curvature continuity of interpolants
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at the junction point by a consideration of the Tj components of the boundary
accelerations, in the contest of the numerical technique introduced in Example
5. Second, we suggest further applications of the UJP method to other Her-
mite interpolation problems such as those involving asymmetric data. We are
currently tackling some of these issues.
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