• Title/Summary/Keyword: monolithic 3D inverter

Search Result 11, Processing Time 0.023 seconds

Characteristic Analysis of Monolithic 3D Inverter Considering Interface Charge (계면 포획 전하를 고려한 3차원 인버터의 특성 분석)

  • Ahn, Tae-Jun;Choi, Bum Ho;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.514-516
    • /
    • 2018
  • We have investigated the effect of interface trap charge on the characteristics of a monolithic 3D inverter by TCAD simulation. The interface trap charge affects the variation of the threshold voltage and threshold voltage. also The interface trap charge affects the IN/OUT characteristics of the monolithic 3D inverter.

  • PDF

Investigation of Electrical Coupling Effect by Random Dopant Fluctuation of Monolithic 3D Inverter (Monolithic 3D Inverter의 RDF에 의한 전기적 커플링 영향 조사)

  • Lee, Geun Jae;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.481-482
    • /
    • 2022
  • In this paper, effect of random dopant fluctuation (RDF) of the top-transistor in a monolithic 3D inverter composed of MOSFET transistors is investigated with 3D TCAD simulation when the gate voltage of the bottom-transistor is changed. The sampling for investigating RDF effect was conducted through the kinetic monte carlo method, and the RDF effect on the threshold voltage variation in the top-transistor was investigated, and the electrical coupling between top-transistors and bottom-transistors was investigated.

  • PDF

Electrical Coupling of Monolithic 3D Inverter Consisting of Junctionless FET (Junctionless FET로 구성된 적층형 3차원 인버터의 전기적 상호작용에 대한 연구)

  • Jang, Ho-Yeong;Kim, Kyung-won;Ahn, Tae-Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.614-615
    • /
    • 2016
  • I studied electrical coupling of monolithic 3D inverter(M3D-INV) consisting of Junctionless FET(JLFET). If the thickness of Inter Layer Dielectric (ILD) between top JLFET and bottom JLFET is less than 50nm, current-voltage characteristic of top JLFET is rapidly changed by the gate voltage of bottom JLFET. Therefore, you have to consider about the electrical interaction according to the thickness between top JLFET and bottom JLFET in M3D-INV.

  • PDF

Investigation of threshold voltage change due to the influence of work-function variation of monolithic 3D Inverter with High-K Gate Oxide (고유전율 게이트 산화막을 가진 적층형 3차원 인버터의 일함수 변화 영향에 의한 문턱전압 변화 조사)

  • Lee, Geun Jae;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.118-120
    • /
    • 2022
  • This paper investigated the change of threshold voltage according to the influence of work-function variation (WFV) of metal gate in the device structure of monolithic 3-dimension inverter (M3DINV). In addition, in order to investigate the change in threshold voltage according to the electrical coupling of the NMOS stacked on the PMOS, the gate voltages of PMOS were applied as 0 and 1 V and then the electrical coupling was investigated. The average change in threshold voltage was measured to be 0.1684 V, and they standard deviation was 0.00079 V.

  • PDF

Investigation into Electrical Characteristics of Logic Circuit Consisting of Modularized Monolithic 3D Inverter Unit Cell

  • Lee, Geun Jae;Ahn, Tae Jun;Lim, Sung Kyu;Yu, Yun Seop
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.137-142
    • /
    • 2022
  • Monolithic three-dimensional (M3D) logics such as M3D-NAND, M3D-NOR, M3D-buffer, M3D 2×1 multiplexer, and M3D D flip-flop, consisting of modularized M3D inverters (M3D-INVs), have been proposed. In the previous M3D logic, each M3D logic had to be designed separately for a standard cell library. The proposed M3D logic is designed by placing modularized M3D-INVs and connecting interconnects such as metal lines or monolithic inter-tier-vias between M3D-INVs. The electrical characteristics of the previous and proposed M3D logics were simulated using the technology computer-aided design and Simulation Program with Integrated Circuit Emphasis with the extracted parameters of the previously developed LETI-UTSOI MOSFET model for n- and p-type MOSFETs and the extracted external capacitances. The area, propagation delay, falling/rising times, and dynamic power consumption of the proposed M3D logic are lower than those of previous versions. Despite the larger space and lower performance of the proposed M3D logic in comparison to the previous versions, it can be easily designed with a single modularized M3D-INV and without having to design all layouts of the logic gates separately.

AC Electrical Coupling of Monolithic 3D Inverter Consisting of Junctionless FET (Junctionless FET로 구성된 적층형 3차원 인버터의 AC 특성에 대한 연구)

  • Kim, Kyung-won;Ahn, Tae-Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.529-530
    • /
    • 2017
  • Electrical coupling of monolithic 3D inverter(M3D-INV) consisting of Junctionless FET(JLFET) was investigated. Depending on the thickness of Inter Layer Dielectirc (ILD) between top and bottom JLFETs, $N_{gate}-N_{gate}$ capacitance and transconductance $g_m$ are changed by the gate voltage of bottom JLFET. Therefore, when using a stacked structure with the ILD below tens nm, AC electrical coupling between two transistors in M3D-INV should be considered.

  • PDF

Comparison of Electrical Coupling of Monolithic 3D Inverter with MOSFET and JLFET (MOSFET와 JLFET의 3차원 인버터 전기적 상호작용의 비교)

  • Ahn, Tae-Jun;Choi, Bum Ho;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.173-174
    • /
    • 2018
  • This paper compared the electrical coupling of the monolithic 3D inverter consisting of MOSFET and JLFET. In the case of both the MOSFET and the JLFET, MOSFET and JLFET have a small threshold voltage variation when the thickness of inter-layer dielectric (ILD) = 100 nm. However, when the thickness of ILD = 10 nm, the threshold voltage variation is larger and the JLFET is twice as much as the MOSFET.

  • PDF

Study of monolithic 3D integrated-circuit consisting of tunneling field-effect transistors (터널링 전계효과 트랜지스터로 구성된 3차원 적층형 집적회로에 대한 연구)

  • Yu, Yun Seop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.682-687
    • /
    • 2022
  • In this paper, the research results on monolithic three-dimensional integrated-circuit (M3DICs) stacked with tunneling field effect transistors (TFETs) are introduced. Unlike metal-oxide-semiconductor field-effect transistors (MOSFETs), TFETs are designed differently from the layout of symmetrical MOSFETs because the source and drain of TFET are asymmetrical. Various monolithic 3D inverter (M3D-INV) structures and layouts are possible due to the asymmetric structure, and among them, a simple inverter structure with the minimum metal layer is proposed. Using the proposed M3D-INV, this M3D logic gates such as NAND and NOR gates by sequentially stacking TFETs are proposed, respectively. The simulation results of voltage transfer characteristics of the proposed M3D logic gates are investigated using mixed-mode simulator of technology computer aided design (TCAD), and the operation of each logic circuit is verified. The cell area for each M3D logic gate is reduced by about 50% compared to one for the two-dimensional planar logic gates.

Device Coupling Effects of Monolithic 3D Inverters

  • Yu, Yun Seop;Lim, Sung Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • The device coupling between the stacked top/bottom field-effect transistors (FETs) in two types of monolithic 3D inverter (M3INV) with/without a metal layer in the bottom tier is investigated, and then the regime of the thickness TILD and dielectric constant εr of the inter-layer distance (ILD), the doping concentration Nd (Na), and length Lg of the channel, and the side-wall length LSW where the stacked FETs are coupled are studied. When Nd (Na) < 1016 cm-3 and LSW < 20 nm, the threshold voltage shift of the top FET varies almost constantly by the gate voltage of the bottom FET, but when Nd (Na) > 1016 cm-3 or LSW > 20 nm, the shift decreases and increases, respectively. M3INVs with TILD ≥ 50 nm and εr ≤ 3.9 can neglect the interaction between the stacked FETs, but when TILD or εr do not meet the above conditions, the interaction must be taken into consideration.

SPICE Simulation of 3D Sequential Inverter Considering Electrical Coupling (전기적 상호작용을 고려한 3차원 순차적 인버터의 SPICE 시뮬레이션)

  • Ahn, Tae-Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.200-201
    • /
    • 2017
  • This paper introduces the SPICE simulation results of 3D sequential inverter considering electrical coupling. TCAD data and the SPICE data are compared to verify that the electrical coupling is well considered by using BSIM-IMG for the upper NMOS and LETI-UTSOI model for the lower PMOS. When inter layer dielectric is small, it is confirmed that electrical coupling is well reflected in the top transistor $I_{ds}-V_{gs}$ characteristics according to the change of the bottom transistor gate voltage.

  • PDF