• 제목/요약/키워드: molecular structural property

검색결과 47건 처리시간 0.024초

다층구조형 아크릴 점착제의 분자량 및 피착재 종류에 따른 접착특성 (Adhesion Properties on the Molecular Weight and Various Substrates of Multi-layered Structural Acrylic Adhesive)

  • 김동복
    • 폴리머
    • /
    • 제39권3호
    • /
    • pp.514-521
    • /
    • 2015
  • 본 연구는 자동차, 건축, 디스플레이 부품 접합 등에 사용되는 다층구조형 양면 점착테이프에 대한 것으로 UV 경화에 의해 제조된 아크릴폼 기재에 용제 건조형 점착제(AD)를 양면에 붙이고 피착제 종류에 따른 박리강도와 전단접착강도를 고찰하였다. AD 종류와 기재 조성에 따른 접착력 변화 및 피착재로 사용한 플라스틱에 대한 접착력을 고찰한 결과, AD의 분자량(MW)이 증가할수록 박리강도 및 전단접착강도가 증가하였으나 약 65만 이상의 MW를 가진 AD는 접착력이 감소하는 거동을 보였다. 양면 점착테이프에 사용된 AD층 두께가 얇을수록 온도감소와 함께 높은 물성 값을 보였다. 기재와 AD와의 계면접합 특성은 MW 615000(AD-4)을 사용한 것이 가장 우수하였으며, MW가 615000보다 낮으면 기재인 아크릴 폼과의 계면이 분리되는 결과를 보였다. 따라서 본 연구에서 검토한 다층구조형 양면 점착테이프는 표면에너지가 낮은 플라스틱 부품 및 곡면 부위에 적용가능한 산업분야에 유용하게 사용될 수 있을 것으로 판단된다.

Surface Morphology of AlSb on GaAs Grown by Molecular Beam Epitaxy and Real-time Growth Monitoring by in situ Ellipsometry

  • Kim, Jun Young;Lim, Ju Young;Kim, Young Dong;Song, Jin Dong
    • Applied Science and Convergence Technology
    • /
    • 제26권6호
    • /
    • pp.214-217
    • /
    • 2017
  • AlSb is a promising material for optical devices, particularly for high-frequency and nonlinear-optical applications. We report the effect of growth temperature on structural properties of AlSb grown on GaAs substrate. In particular we studied the surface of AlSb with the growth temperature by atomic force microscopy, and concluded that optimized growth temperature of AlSb is $530^{\circ}C$. We also show the result of real-time monitoring of AlSb growth by in situ ellipsometry. The results of the structural study are good agreement with the previous reported ellipsometric data.

Physicochemical Properties of Starch Affected by Molecular Composition and Structures: A Review

  • Srichuwong, Sathaporn;Jane, Jay-Iin
    • Food Science and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.663-674
    • /
    • 2007
  • Starches from different botanical sources differ in the ratio of amylose to amylopectin contents, molecular structures of amylose and amylopectin, granule morphology, and minor-component contents. These structural features result in different gelatinization, pasting, retrogradation properties, and enzyme digestibility of starch granules. In this review, compositions and molecular structures of starches and their effects on the physicochemical properties are summarized and discussed.

Molecular Mechanisms of Synaptic Specificity: Spotlight on Hippocampal and Cerebellar Synapse Organizers

  • Park, Dongseok;Bae, Sungwon;Yoon, Taek Han;Ko, Jaewon
    • Molecules and Cells
    • /
    • 제41권5호
    • /
    • pp.373-380
    • /
    • 2018
  • Synapses and neural circuits form with exquisite specificity during brain development to allow the precise and appropriate flow of neural information. Although this property of synapses and neural circuits has been extensively investigated for more than a century, molecular mechanisms underlying this property are only recently being unveiled. Recent studies highlight several classes of cell-surface proteins as organizing hubs in building structural and functional architectures of specific synapses and neural circuits. In the present minireview, we discuss recent findings on various synapse organizers that confer the distinct properties of specific synapse types and neural circuit architectures in mammalian brains, with a particular focus on the hippocampus and cerebellum.

Molecular Dynamics Simulation of Liquid Alkanes III. Thermodynamic, Structural, and Dynamic Properties of Branched-Chain Alkanes

  • 이송희;이홍;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권5호
    • /
    • pp.501-509
    • /
    • 1997
  • In recent papers[Bull. Kor. Chem. Soc. 1996, 17, 735; ibid 1997, 18, 478] we reported results of molecular dynamics (MD) simulations for the thermodynamic, structural, and dynamic properties of liquid normal alkanes, from n-butane to n-heptadecane, using three different models. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. In the present paper we present results of MD simulations for the corresponding properties of liquid branched-chain alkanes using the same models. The thermodynamic property reflects that the intermolecular interactions become weaker as the shape of the molecule tends to approach that of a sphere and the surface area decreases with branching. Not like observed in the straight-chain alkanes, the structural properties of model Ⅲ from the site-site radial distribution function, the distribution functions of the average end-to-end distance and the root-mean-squared radii of gyration are not much different from those of models Ⅰ and Ⅱ. The branching effect on the self diffusion of liquid alkanes is well predicted from our MD simulation results but not on the viscosity and thermal conductivity.

초미세분쇄를 이용한 쌀 변성전분의 물리적 특성 변화구명 (Investigation of Physical Property Change in Modified Rice Starch by Ultra Fine Pulverization)

  • 한명륜;장문정;김명환
    • Applied Biological Chemistry
    • /
    • 제50권3호
    • /
    • pp.160-166
    • /
    • 2007
  • 본 연구는 초미세 분체기술을 이용하여 쌀 전분의 입자구조 파괴가 이루어졌을 때 분자구조적, 물리적 변화가 어떻게 이루어지는지를 구명하고자 하였다. 분쇄 후 쌀 전분의 평균직경은 약 20% 감소가 이루어졌으며 비표면적은 25% 증가하였다. 분쇄 전후의 쌀 전분에 대한 분자량분포를 GPC(gel permeation chromatography)로 측정한 결과 Peak II의 면적이 36.5%에서 59.5%로 상승하였다. 분쇄 전후 손상전분 정도는 각각 16.40%와 99.2%로 나타났다. 분쇄 전에 비하여 분쇄 후 쌀 전분의 물결합능력, 용해도와 광 투과도에서도 월등히 높았다. $30^{\circ}C$에서 20 rpm을 기준으로 분쇄후의 쌀 전분의 겉보기점도는 상대적으로 분쇄 전의 7% 수준에 불과하였으며 측정온도가 높아짐에 따라서 차이는 더욱 커졌다.

초미세분쇄를 이용한 옥수수 변성전분의 물리적 특성 변화 구명 (Investigation of Physical Property Change in Modified Corn Starch by Ultra Fine Pulverization)

  • 한명륜;김애정;장문정;이수정;김희선;김명환
    • 산업식품공학
    • /
    • 제13권4호
    • /
    • pp.335-340
    • /
    • 2009
  • 본 연구는 초미세분쇄기술을 이용하여 옥수수전분의 입자구조파괴가 이루어졌을 때 분자구조적, 물리적 변화가 어떻게 이루어지는지를 구명하고자 하였다. 초미세 분쇄처리 후 옥수수전분의 평균직경은 약 50% 감소가 이루어졌으며 비표면적은 567% 증가하였다. 초미세분쇄처리 전 후의 옥수수전분에 대한 분자량분포를 GPC로 측정한 결과 분쇄 후 저분자량의 Peak II의 면적이 21.0%에서 86.5%로 상승하였다. 손상전분 함량은 각각 9.63%와 83.57%로 초미세분쇄처리에 의하여 크게 증가하였다. 옥수수전분의 경우는 겔(gel)을 형성하였으나 초미세분쇄처리 후에는 전분의 분쇄과정에서 전분입자파괴와 아울러 옥수수전분의 분자량이 저분자화 되면서 겔 형성능력이 크게 저하되었다.

Structure of a DNA Duplex Containing a Site-Specific Dewar Isomer: Structural Influence of the 3'-T.G base pair of the Dewar product.

  • Lee, Joon-Hwa;Choi, Byong-Seok
    • BMB Reports
    • /
    • 제33권3호
    • /
    • pp.268-275
    • /
    • 2000
  • In contrast to the pyrimidine (6-4)pyrimidone photoproduct [(6-4) adduct], its Dewar valence isomer (Dewar product) is low mutagenic and produces a broad range of mutations with a 42 % replicating error frequency. In order to determine the origin of the mutagenic property of the Dewar product, we used experimental NMR restraints and molecular dynamics to determine the solution structure of a Dewar·lesion DNA decamer duplex, which contains a mismatched base pair between the 3'-T residue and an opposed G residue. The 3'-T of the Dewar lesion forms stable hydrogen bonds with the opposite G residue. The helical bending and unwinding angles of the DW/GA duplex, however, are much higher than those of the DW/AA duplex. The stable hydrogen bonding of the G 15 residue does not increase the thermal stability of the overall helix. It also does not restore the distorted backbone conformation of the DNA helix that is caused by the forming of a Dewar lesion. These structural features implicate that no thermal stability, or conformational benefits of G over A opposite the 3'-T of the Dewar lesion, facilitate the preferential incorporation of an A. This is in accordance with the A rule during translesion replication and leads to the low frequent $3'-T{\rightarrow}C$ mutation at this site.

  • PDF

Thermal Conductivity Analysis of Amorphous Silicon Formed by Natural Cooling: A Molecular-dynamics Study

  • Lee, Byoung Min
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.295-300
    • /
    • 2016
  • To investigate the thermal conductivity and the structural properties of naturally cooled excimer-laser annealed Si, molecular-dynamics (MD) simulations have been performed. The thermal conductivity of crystalline Si (c-Si) was measured by direct method at 1000 K. Steady-state heat flow was measured using a stationary temperature profile; significant deviations from Fourier's law were not observed. Reliable processes for measuring the thermal conductivity of c-Si were presented. A natural cooling process to admit heat flow from molten Si (l-Si) to c-Si was performed using an MD cell with a size of $48.9{\times}48.9{\times}97.8{\AA}^3$. During the cooling process, the temperature of the bottom $10{\AA}$ of the MD cell was controlled at 300 K. The results suggest that the natural cooling system described the static structural property of amorphous Si (a-Si) well.

Structural Bioinformatics Analysis of Disease-related Mutations

  • Park, Seong-Jin;Oh, Sang-Ho;Park, Dae-Ui;Bhak, Jong
    • Genomics & Informatics
    • /
    • 제6권3호
    • /
    • pp.142-146
    • /
    • 2008
  • In order to understand the protein functions that are related to disease, it is important to detect the correlation between amino acid mutations and disease. Many mutation studies about disease-related proteins have been carried out through molecular biology techniques, such as vector design, protein engineering, and protein crystallization. However, experimental protein mutation studies are time-consuming, be it in vivo or in vitro. We therefore performed a bioinformatic analysis of known disease-related mutations and their protein structure changes in order to analyze the correlation between mutation and disease. For this study, we selected 111 diseases that were related to 175 proteins from the PDB database and 710 mutations that were found in the protein structures. The mutations were acquired from the Human Gene Mutation Database (HGMD). We selected point mutations, excluding only insertions or deletions, for detecting structural changes. To detect a structural change by mutation, we analyzed not only the structural properties (distance of pocket and mutation, pocket size, surface size, and stability), but also the physico-chemical properties (weight, instability, isoelectric point (IEP), and GRAVY score) for the 710 mutations. We detected that the distance between the pocket and disease-related mutation lay within $20\;{\AA}$ (98.5%, 700 proteins). We found that there was no significant correlation between structural stability and disease-causing mutations or between hydrophobicity changes and critical mutations. For large-scale mutational analysis of disease-causing mutations, our bioinformatics approach, using 710 structural mutations, called "Structural Mutatomics," can help researchers to detect disease-specific mutations and to understand the biological functions of disease-related proteins.