Browse > Article
http://dx.doi.org/10.5757/ASCT.2017.26.6.214

Surface Morphology of AlSb on GaAs Grown by Molecular Beam Epitaxy and Real-time Growth Monitoring by in situ Ellipsometry  

Kim, Jun Young (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University)
Lim, Ju Young (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology)
Kim, Young Dong (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University)
Song, Jin Dong (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology)
Publication Information
Applied Science and Convergence Technology / v.26, no.6, 2017 , pp. 214-217 More about this Journal
Abstract
AlSb is a promising material for optical devices, particularly for high-frequency and nonlinear-optical applications. We report the effect of growth temperature on structural properties of AlSb grown on GaAs substrate. In particular we studied the surface of AlSb with the growth temperature by atomic force microscopy, and concluded that optimized growth temperature of AlSb is $530^{\circ}C$. We also show the result of real-time monitoring of AlSb growth by in situ ellipsometry. The results of the structural study are good agreement with the previous reported ellipsometric data.
Keywords
AlSb; molecular beam epitaxy; surface morphology; real-time monitorinc; ellipsometry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, Solid-state Electronics. 49, 1875 (2005)   DOI
2 Z. Dobrovolskis, K. Grigoras, and A. Krotkus, Appl. Phys. A: Solids Surf. 48, 245 (1989).   DOI
3 I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).   DOI
4 A. G. Milnes and A. Y. Polyakov, Mater. Sci. Eng. B 18, 237 (1993).   DOI
5 Yu. G. Sadofyev, A. Ramamoorthy, B. Naser, J. P. Bird, S. R. Johnson, and Y-H. Zhang, Appl. Phys. Lett. 81, 1833 (2002).   DOI
6 H. Rodilla, T. Gonzalez, D. Pardo, and J. Mateos, J. Appl. Phys. 105, 113705 (20009).   DOI
7 A. Zakharova, I. Lapushkin, K. Nilsson, S. T. Yen, and K. A. Chao, Phys. Rev. B 73, 125337 (2006).   DOI
8 J. B. Boos, B. R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, R. Bass, and B. V. Shanabrook, Electronics Letters 43 (2007) 834.   DOI
9 B. R. Bennett, M. G. Ancona, and J. B. Boos, Mrs Bulletin 34 (2009) 530.   DOI
10 G. Tuttle, H. Kroemer and J. H. English, J. Appl. Phys. 67, 3032 (1990).   DOI
11 B. R. Bennett, B. V. Shanabrook, and E. R. Glaser, Appl. Phys. Lett. 65, 598 (1994).   DOI
12 S. H. Shin, J. Y. Lim, J. D. Song, H. J. Kim, S. H. Han, and T. G. Kim, J. Korean Phys. Soc. 53, 2719 (2008).   DOI
13 B. P. Tinkham, B. R. Bennett, R. Magno, B. V. Shanabrook, and J. B. Boos, J. Vac. Sci. Technol. B 23, 1441 (2005).   DOI
14 B. R. Bennett, B. P. Tinkham, J. B. Boos, M. D. Lange, and R. Tsai, J. Vac. Sci. Technol. B 22, 688 (2004).   DOI
15 A. Tahraoui, P. Tomasini, L. Lassabatere, and J. Bonnet, Appl. Surf. Sci. 162-163, 425 (2000).   DOI
16 Y. W. Jung, T. H. Ghong, J. S. Byun, Y. D. Kim, H. J. Kim, Y. C. Chang, S. H. Shin, and J. D. Song, Appl. Phys. Lett. 94, 231913 (2009).   DOI
17 C. Nguyen, B. Brar, C. R. Bolognesi, J. J. Pekarik, H. Kroemer, and J. H. English J. Electronic Materials 22, 255 (1993).   DOI
18 P. R. Hammar, and M. Johnson, Phys. Rev. Lett. 88, 066806-1 (2002).   DOI
19 Y. C. Lin, H. Yamaguchi, E. Y. Chang, Y. C. Hsieh, M. Ueki, Y. Hirayama, and C. Y. Chang, Appl. Phys. Lett. 90, 023509 (2007).   DOI