Physicochemical Properties of Starch Affected by Molecular Composition and Structures: A Review

  • Srichuwong, Sathaporn (Department of Food Science and Human Nutrition, Iowa State University) ;
  • Jane, Jay-Iin (Department of Food Science and Human Nutrition, Iowa State University)
  • Published : 2007.10.31

Abstract

Starches from different botanical sources differ in the ratio of amylose to amylopectin contents, molecular structures of amylose and amylopectin, granule morphology, and minor-component contents. These structural features result in different gelatinization, pasting, retrogradation properties, and enzyme digestibility of starch granules. In this review, compositions and molecular structures of starches and their effects on the physicochemical properties are summarized and discussed.

Keywords

References

  1. Whisler RL, BeMiller JN. Starch. pp. 117-151. In: Carbohydrate Chemistry for Food Scientists. Whisler RL, BeMiller JN (eds). American Association of Cereal Chemists, St. Paul, MN, USA (1997)
  2. Imberty A, Buleon A, Vinh T, Perez S. Recent advances in knowledge of starch structure. Starch-Starke 43: 375-384 (1991) https://doi.org/10.1002/star.19910431002
  3. Jane J, Kasemsuwan T, Leas S, Zobel H, Robyt JF. Anthology of starch granule morphology by scanning electron microscopy. Starch-Starke 46: 121-129 (1994) https://doi.org/10.1002/star.19940460402
  4. Takeda Y, Hizukuri S, Takeda C, Suzuki A. Structures of branched molecules of amyloses of various origins, and molar fractions of branched and unbranched molecules. Carbohyd. Res. 165: 139-145 (1987) https://doi.org/10.1016/0008-6215(87)80089-7
  5. Hizukuri S. Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohyd. Res. 147: 342-347 (1986) https://doi.org/10.1016/S0008-6215(00)90643-8
  6. Yoo S-H, Jane J. Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors. Carbohyd. Polym. 49: 307-314 (2002) https://doi.org/10.1016/S0144-8617(01)00339-3
  7. French D. Organization of starch granules. pp. 183-247. In: Starch Chemistry and Technology. Whistler RL, Bemiller JN, Paschall EF (eds). Academic Press, New York, NY, USA (1984)
  8. Kainuma K, French D. Naegeli amylodextrin and its relation to starch granule structure. I. Preparation and properties of amylodextrins from various starch types. Biopolymers 10: 1673-1680 (1971) https://doi.org/10.1002/bip.360100920
  9. Yamaguchi M, Kainuma K, French D. Electron microscopic observations of waxy maize starch. J. Ultrastruct. Res. 69: 249-261 (1979) https://doi.org/10.1016/S0022-5320(79)90114-X
  10. Imberty A, Perez S. A revisit to the three-dimensional structure of B-type starch. Biopolymers 27: 1205-1221 (1988) https://doi.org/10.1002/bip.360270803
  11. Imberty A, Chanzy H, Perez S, Buleon A, Tran V. The doublehelical nature of the crystalline part of A-starch. J. Mol. Biol. 201: 365-378 (1988) https://doi.org/10.1016/0022-2836(88)90144-1
  12. Hizukuri S. Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohyd. Res. 141: 295-306 (1985) https://doi.org/10.1016/S0008-6215(00)90461-0
  13. Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 76: 629-637 (1999) https://doi.org/10.1094/CCHEM.1999.76.5.629
  14. Jane J, Chen JF. Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch. Cereal Chem. 69: 60-65 (1992)
  15. Takeda Y, Shirasaka K, Hizukuri S. Examination of the purity and structure of amylose by gel-permeation chromatography. Carbohyd. Res. 132: 83-92 (1984) https://doi.org/10.1016/0008-6215(84)85066-1
  16. Jane J, Xu A, Radosavljevic M, Seib PA. Location of amylose in normal starch granules. I. Susceptibility of amylose and amylopectin to cross-linking reagents. Cereal Chem. 69: 405-409 (1992)
  17. Kasemsuwan T, Jane J. Location of amylose in normal starch granules. II. Locations of phosphodiester crosslinking revealed by phosphorus-31 nuclear magnetic resonance. Cereal Chem. 71: 282- 287 (1994)
  18. Jane J, Shen JJ. Internal structure of the potato starch granule revealed by chemical gelatinization. Carbohyd. Res. 247: 279-290 (1993) https://doi.org/10.1016/0008-6215(93)84260-D
  19. Pan DD, Jane J. Internal structure of normal maize starch granules revealed by chemical surface gelatinization. Biomacromolecules 1: 126-132 (2000) https://doi.org/10.1021/bm990016l
  20. Li L, Blanco M, Jane J. Physicochemical properties of endosperm and pericarp starches during maize development. Carbohyd. Polym. 67: 630-639 (2007) https://doi.org/10.1016/j.carbpol.2006.08.013
  21. Inouchi N, Glover DV, Takaya T, Fuwa H. Development changes in fine structure of starches of several endosperm mutants of maize. Starch-Starke 35: 371-376 (1983) https://doi.org/10.1002/star.19830351102
  22. Kasemsuwan T, Jane J, Schnable P, Stinard P, Robertson D. Characterization of the dominant mutant amylose-extender (Ae1- 5180) maize starch. Cereal Chem. 72: 457-464 (1995)
  23. Perera C, Lu Z, Sell J, Jane J. Comparison of physicochemical properties and structures of sugary-2 cornstarch with normal and waxy cultivars. Cereal Chem. 78: 249-256 (2001) https://doi.org/10.1094/CCHEM.2001.78.3.249
  24. Takeda Y, Preiss J. Structures of B90 (sugary) and W64A (normal) maize starches. Carbohyd. Res. 240: 265-275 (1993) https://doi.org/10.1016/0008-6215(93)84189-D
  25. Morrison WR. Starch lipids and how they relate to starch granule structure and functionality. Cereal Food World 40: 437-438 (1995)
  26. Kasemsuwan T, Jane J. Quantitative method for the survey of starch phosphate derivatives and starch phospholipids by 31P nuclear magnetic resonance spectroscopy. Cereal Chem. 73: 702-707 (1996)
  27. Lim S, Kasemsuwan T, Jane J. Characterization of phosphorus in starch by 31P-nuclear magnetic resonance spectroscopy. Cereal Chem. 71: 488-493 (1994)
  28. Hizukuri S. Starch: Analytical aspects. pp. 305-390. In: Carbohydrates in Food. Eliasson AC (ed). CRC Press, Boca Raton, FL, USA (2006)
  29. Atwell WA, Hood LF, Lineback DR, Varriano-Marston E, Zobel HF. The terminology and methodology associated with basic starch phenomena. Cereal Food World 33: 306-311 (1988)
  30. Jane J. Starch: Structures and properties. pp. 81-101. In: Chemical and Functional Properties of Food Saccharides. Tomasik P (ed). CRC Press, Boca Raton, FL, USA (2004)
  31. Donovan JW. Phase transitions of the starch-water system. Biopolymers 18: 263-275 (1979) https://doi.org/10.1002/bip.1979.360180204
  32. Eliasson A-C, Gudmundsson M. Starch: Physicochemical and functional aspects. pp. 391-469. In: Carbohydrates in Food. Eliasson AC (ed). CRC Press, Boca Raton, FL, USA (2006)
  33. Liu H, Lelievre J. A model of starch gelatinization linking differential scanning calorimetry and birefringence measurements. Carbohyd. Polym. 20: 1-5 (1993) https://doi.org/10.1016/0144-8617(93)90026-Z
  34. Noda T, Takahata Y, Sato T, Suda I, Morishita T, Ishiguro K, Yamakawa O. Relationships between chain length distribution of amylopectin and gelation properties within the same botanical origin for sweet potato and buckwheat. Carbohyd. Polym. 37: 153- 158 (1998) https://doi.org/10.1016/S0144-8617(98)00047-2
  35. Ji Y, Seetharaman K, Wong K, Pollak LM, Duvick S, Jane J, White PJ. Thermal and structural properties of unusual starches from developmental corn lines. Carbohyd. Polym. 51: 439-450 (2003) https://doi.org/10.1016/S0144-8617(02)00216-3
  36. Nakamura Y, Sakurai A, Inaba Y, Kimura K, Iwasawa N, Nagamine T. The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes. Starch-Starke 54: 117-131 (2002) https://doi.org/10.1002/1521-379X(200204)54:3/4<117::AID-STAR117>3.0.CO;2-2
  37. Vandeputte GE, Vermeylen R, Geeroms J, Delcour JA. Rice starches. I. Structural aspects provide insight into crystallinity characteristics and gelatinisation behaviour of granular starch. J. Cereal Sci. 38: 43-52 (2003) https://doi.org/10.1016/S0733-5210(02)00140-6
  38. Wong K-S, Kubo A, Jane J, Harada K, Satoh H, Nakamura Y. Structures and properties of amylopectin and phytoglycogen in the endosperm of sugary-1 mutants of rice. J. Cereal Sci. 37: 139-149 (2003) https://doi.org/10.1006/jcrs.2002.0485
  39. Jane J, Shen L, Chen J, Lim S, Kasemsuwan T, Nip WK. Physical and chemical studies of taro starches and flours. Cereal Chem. 69: 528-535 (1992)
  40. Shi Y-C, Seib PA. The structure of four waxy starches related to gelatinization and retrogradation. Carbohyd. Res. 227: 131-145 (1992) https://doi.org/10.1016/0008-6215(92)85066-9
  41. Shi Y-C, Seib PA. Fine structure of maize starches from four wxcontaining genotypes of the W64A inbred line in relation to gelatinization and retrogradation. Carbohyd. Polym. 26: 141-147 (1995) https://doi.org/10.1016/0144-8617(94)00059-3
  42. Yuan RC, Thompson DB, Boyer CD. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx-containing genotypes in two inbred lines. Cereal Chem. 70: 81-89 (1993)
  43. Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M. Starches from different botanical sources I: Contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohyd. Polym. 60: 529-538 (2005) https://doi.org/10.1016/j.carbpol.2005.03.004
  44. Blanshard JMV. Starch granule structure and function: A physicochemical approach. pp. 16-54. In: Starch: Properties and Potential. Galliard T (ed). John Wiley & Sons , Chichester, OH, USA (1986)
  45. Wu H-CH, Sarko A. Packing analysis of carbohydrates and polysaccharides. VIII. The double-helical molecular structure of crystalline B-amylose. Carbohyd. Res. 61: 7-25 (1978) https://doi.org/10.1016/S0008-6215(00)84463-8
  46. Zobel HF. Molecules to granules: A comprehensive starch review. Starch-Starke 40: 44-50 (1988) https://doi.org/10.1002/star.19880400203
  47. Jane J, Wong K-S, McPherson AE. Branch-structure difference in starches of A- and B-type x-ray patterns revealed by their Naegeli dextrins. Carbohyd. Res. 300: 219-227 (1997) https://doi.org/10.1016/S0008-6215(97)00056-6
  48. Gidley MJ, Bulpin PV. Crystallization of malto-oligosaccharides as models of the crystalline forms of starch: Minimum chain-length requirement for the formation of double helixes. Carbohyd. Res. 161: 291-300 (1987) https://doi.org/10.1016/S0008-6215(00)90086-7
  49. Pfannemuller B. Influence of chain length of short monodisperse amyloses on the formation of A- and B-type x-ray diffraction patterns. Int. J. Biol. Macromol. 9: 105-108 (1987) https://doi.org/10.1016/0141-8130(87)90034-1
  50. Ring SG, Miles MJ, Morris VJ, Turner R, Colonna P. Spherulitic crystallization of short chain amylose. Int. J. Biol. Macromol. 9: 158-160 (1987) https://doi.org/10.1016/0141-8130(87)90044-4
  51. Whittam MA, Noel TR, Ring SG. Melting behavior of A- and Btype crystalline starch. Int. J. Biol. Macromol. 12: 359-362 (1990) https://doi.org/10.1016/0141-8130(90)90043-A
  52. Sarko A, Wu H-C. The crystal structures of A-, B-, and Cpolymorphs of amylose and starch. Starch-Starke 30: 73-78 (1978) https://doi.org/10.1002/star.19780300302
  53. Takeda Y, Hizukuri S. Studies on starch phosphate. Part 6. Location of phosphate groups in potato amylopectin. Carbohyd. Res. 102: 321-327 (1982) https://doi.org/10.1016/S0008-6215(00)88077-5
  54. Fujita S, Sugimoto Y, Yamashita Y, Fuwa H. Physicochemical studies of starch from foxtail millet (Setaria italica Beauv.). Food Chem. 55: 209-213 (1996) https://doi.org/10.1016/0308-8146(95)00107-7
  55. Kosson R, Czuchajowska Z, Pomeranz Y. Smooth and wrinkled peas. 1. General physical and chemical characteristics. J. Agr. Food. Chem. 42: 91-95 (1994) https://doi.org/10.1021/jf00037a014
  56. Sasaki T, Yasui T, Matsuki J. Effect of amylose content on gelatinization, retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal Chem. 77: 58-63 (2000) https://doi.org/10.1094/CCHEM.2000.77.1.58
  57. Ahmad FB, Williams PA. Effect of sugars on the thermal and rheological properties of sago starch. Biopolymers 50: 401-412 (1999) https://doi.org/10.1002/(SICI)1097-0282(19991005)50:4<401::AID-BIP6>3.0.CO;2-V
  58. Lee HA, Kim NH, Nishinari K. DSC and rheological studies of the effects of sucrose on the gelation and retrogradation of acorn starch. Thermochim. Acta 322: 39-46 (1998) https://doi.org/10.1016/S0040-6031(98)00469-9
  59. Kohyama K, Nishinari K. Effect of soluble sugars on gelatinization and retrogradation of sweet potato starch. J. Agr. Food. Chem. 39: 1406-1410 (1991) https://doi.org/10.1021/jf00008a010
  60. Nakazawa Y, Wang Y-j. Acid hydrolysis of native and annealed starches and branch-structure of their Naegeli dextrins. Carbohyd. Res. 338: 2871-2882 (2003) https://doi.org/10.1016/j.carres.2003.09.005
  61. Yoon J-I, Kim S-K. Effect of annealing on pasting properties and gel hardness of mung bean starch. Food Sci. Biotechnol. 12: 526-532 (2003)
  62. Maher GG. Alkali gelatinization of starches. Starch-Starke 35: 226- 234 (1983) https://doi.org/10.1002/star.19830350703
  63. Koch K, Jane J. Morphological changes of granules of different starches by surface gelatinization with calcium chloride. Cereal Chem. 77: 115-120 (2000) https://doi.org/10.1094/CCHEM.2000.77.2.115
  64. Ahmad FB, Williams PA. Effect of salts on the gelatinization and rheological properties of sago starch. J. Agr. Food. Chem. 47: 3359- 3366 (1999) https://doi.org/10.1021/jf981249r
  65. Tester RF, Morrison WR. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 67: 551-557 (1990)
  66. Derek R, Prentice M, Stark JR, Gidley MJ. Granule residues and 'ghosts' remaining after heating A-type barley-starch granules in water. Carbohyd. Res. 227: 121-130 (1992) https://doi.org/10.1016/0008-6215(92)85065-8
  67. Doublier JL. Rheological studies on starch - flow behavior of wheat starch pastes. Starch-Starke 33: 415-420 (1981) https://doi.org/10.1002/star.19810331205
  68. Rasper V. Theoretical aspects of amylographology. pp. 1-6. In: The Amylograph Handbook. Shuey WC, Tipples KE (eds). American Association of Cereal Chemists, St. Paul, MN, USA (1980)
  69. Araki E, Miura H, Sawada S. Differential effects of the null alleles at the three Wx loci on the starch-pasting properties of wheat. Theor. Appl. Genet. 100: 1113-1120 (2000) https://doi.org/10.1007/s001220051394
  70. Collado LS, Mabesa RC, Corke H. Genetic variation in the physical properties of sweet potato starch. J. Agr. Food. Chem. 47: 4195- 4201 (1999) https://doi.org/10.1021/jf990110t
  71. Reddy KR, Subramanian R, Ali SZ, Bhattacharya KR. Viscoelastic properties of rice-flour pastes and their relationship to amylose content and rice quality. Cereal Chem. 71: 548-552 (1994)
  72. Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M. Starches from different botanical sources II: Contribution of starch structure to swelling and pasting properties. Carbohyd. Polym. 62: 25-34 (2005) https://doi.org/10.1016/j.carbpol.2005.07.003
  73. Vandeputte GE, Derycke V, Geeroms J, Delcour JA. Rice starches. II. Structural aspects provide insight into swelling and pasting properties. J. Cereal Sci. 38: 53-59 (2003) https://doi.org/10.1016/S0733-5210(02)00141-8
  74. Noda T, Tohnooka T, Taya S, Suda I. Relationship between physicochemical properties of starches and white salted noodle quality in Japanese wheat flours. Cereal Chem. 78: 395-399 (2001) https://doi.org/10.1094/CCHEM.2001.78.4.395
  75. Edwards A, Fulton DC, Hylton CM, Jobling SA, Gidley M, Rossner U, Martin C, Smith AM. A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant J. 17: 251-261 (1999) https://doi.org/10.1046/j.1365-313X.1999.00371.x
  76. Franco CML, Wong K-S, Yoo S-H, Jane J. Structural and functional characteristics of selected soft wheat starches. Cereal Chem. 79: 243-248 (2002) https://doi.org/10.1094/CCHEM.2002.79.2.243
  77. Han X-Z, Hamaker BR. Amylopectin fine structure and rice starch paste breakdown. J. Cereal Sci. 34: 279-284 (2001) https://doi.org/10.1006/jcrs.2001.0374
  78. Galliard T, Bowler P. Morphology and composition of starch. pp. 55-78. In: Starch: Properties and Potential; Critical Reports on Applied Chemistry. Galliard T (ed). Wiley Interscience, New York, NY, USA (1987)
  79. Jane J, Kasemsuwan T, Chen JF, Juliano BO. Phosphorus in rice and other starches. Cereal Food World 41: 827-832 (1996)
  80. Morrison WR, Law RV, Snape CE. Evidence for inclusion complexes of lipids with V-amylose in maize, rice, and oat starches. J. Cereal Sci. 18: 107-109 (1993) https://doi.org/10.1006/jcrs.1993.1039
  81. Yoo S-H, Jane J. Structural and physical characteristics of waxy and other wheat starches. Carbohyd. Polym. 49: 297-305 (2002) https://doi.org/10.1016/S0144-8617(01)00338-1
  82. Debet MR, Gidley MJ. Three classes of starch granule swelling: Influence of surface proteins and lipids. Carbohyd. Polym. 64: 452- 465 (2006) https://doi.org/10.1016/j.carbpol.2005.12.011
  83. Noda T, Tsuda S, Mori M, Takigawa S, Matsuura-Endo C, Hashimoto N, Yamauchi H. Properties of starches from potato varieties grown in Hokkaido. J. Appl. Glycosci. 51: 241-246 (2004) https://doi.org/10.5458/jag.51.241
  84. Kainuma K, Yamamoto K, Suzuki S, Takaya T, Fuwa H. Studies on structure and physico-chemical properties of starch. Part IV: Structural, chemical, and rheological properties of air classified small and large granule of potato starch. J. Jpn. Soc. Starch Sci. 25: 3-11 (1978) https://doi.org/10.5458/jag1972.25.3
  85. Yamamoto K, Sugai Y, Onogaki T. The rheological properties of starch pastes and gels obtained from air classified potato starches. J. Jpn. Soc. Starch Sci. 29: 277-286 (1982) https://doi.org/10.5458/jag1972.29.277
  86. Tsai M-L, Li C-F, Lii C-Y. Effects of granular structures on the pasting behaviors of starches. Cereal Chem. 74: 750-757 (1997) https://doi.org/10.1094/CCHEM.1997.74.6.750
  87. Sievert D, Wuersch P. Amylose chain association based on differential scanning calorimetry. J. Food Sci. 58: 1332-1334 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb06177.x
  88. Vandeputte GE, Vermeylen R, Geeroms J, Delcour JA. Rice starches. III. Structural aspects provide insight in amylopectin retrogradation properties and gel texture. J. Cereal Sci. 38: 61-68 (2003) https://doi.org/10.1016/S0733-5210(02)00142-X
  89. Gidley MJ, Bulpin PV. Aggregation of amylose in aqueous systems: The effect of chain length on phase behavior and aggregation kinetics. Macromolecules 22: 341-346 (1989) https://doi.org/10.1021/ma00191a062
  90. Eberstein K, Hoepcke R, Konieczny-Janda G, Stute R. DSC studies on starches. Part I. Possible thermoanalytical methods for characterizing starches. Starch-Starke 32: 397-404 (1980) https://doi.org/10.1002/star.19800321202
  91. Jane J, Robyt JF. Structure studies of amylose-V complexes and retrograded amylose by action of alpha amylases, and a new method for preparing amylodextrins. Carbohyd. Res. 132: 105-118 (1984) https://doi.org/10.1016/0008-6215(84)85068-5
  92. Eliasson AC. Retrogradation of starch as measured by differential scanning colorimetry. pp. 93-98. In: New Approaches to Research on Cereal Carbohydrates. Hill RD, Munck L (eds). Elsevier, Amsterdam, Netherlands (1985)
  93. Ring SG, Colonna P, I'Anson KJ, Kalichevsky MT, Miles MJ, Morris VJ, Orford PD. The gelation and crystallization of amylopectin. Carbohyd. Res. 162: 277-293 (1987) https://doi.org/10.1016/0008-6215(87)80223-9
  94. Russell PL. The aging of gels from starches of different amylose/ amylopectin content studied by differential scanning calorimetry. J. Cereal Sci. 6: 147-158 (1987) https://doi.org/10.1016/S0733-5210(87)80051-6
  95. Brennan JG, Sodah-Ayernor G. A study of the kinetics of retrogradation in a starch-based dough made from dehydrated yam (Dioscorea rotundata L. Poir). Starch-Starke 25: 276-280 (1973) https://doi.org/10.1002/star.19730250807
  96. Kalichevsky MT, Orford PD, Ring SG. The retrogradation and gelation of amylopectins from various botanical sources. Carbohyd. Res. 198: 49-55 (1990) https://doi.org/10.1016/0008-6215(90)84275-Y
  97. Kim N-H, Yoo S-H. Molecular structure and gelatinization properties of turnip starch (Brassica rapa L.). Food Sci. Biotechnol. 14: 470- 473 (2005)
  98. Silverio J, Fredriksson H, Andersson R, Eliasson AC, Aman P. The effect of temperature cycling on the amylopectin retrogradation of starches with different amylopectin unit-chain length distribution. Carbohyd. Polym. 42: 175-184 (2000) https://doi.org/10.1016/S0144-8617(99)00140-X
  99. Würsch P, Gumy D. Inhibition of amylopectin retrogradation by partial beta-amylolysis. Carbohyd. Res. 256: 129-137 (1994) https://doi.org/10.1016/0008-6215(94)84232-9
  100. Banks W, Greenwood CT. Starch and Its Components. Edinburgh University Press, Edinburgh, Great Britian. pp 77-79 (1975)
  101. Thygesen LG, Blennow A, Engelsen SB. The effects of amylose and starch phosphate on starch gel retrogradation studied by lowfield 1H NMR relaxometry. Starch-Starke 55: 241-249 (2003)
  102. Slade L, Levine H. Recent advances in starch retrogradation. pp. 387-430. In: Industrial Polysaccharides. The Impact of Biotechnology and Advanced Methodologies. Stivala SS, Crescenzi V, Dea ICM (eds). Gordon and Breach, New York, NY, USA (1987)
  103. Longton J, LeGrys GA. Differential scanning calorimetry studies on the crystallinity of ageing wheat starch gels. Starch-Starke 33: 410-414 (1981) https://doi.org/10.1002/star.19810331204
  104. Zeleznak KJ, Hoseney RC. The role of water in the retrogradation of wheat starch gels and bread crumb. Cereal Chem. 63: 407-411 (1986)
  105. Baker LA, Rayas-Duarte P. Retrogradation of amaranth starch at different storage temperatures and the effects of salt and sugars. Cereal Chem. 75: 308-314 (1998) https://doi.org/10.1094/CCHEM.1998.75.3.308
  106. Lee S-W, Han S-H, Rhee C. Effects of various salts and emulsifiers on retrogradation rate of rice starch gel. Food Sci. Biotechnol. 11: 48-54 (2002)
  107. Bhandari PN, Singhal RS. Effect of succinylation on the corn and amaranth starch pastes. Carbohyd. Polym. 48: 233-240 (2002) https://doi.org/10.1016/S0144-8617(01)00310-1
  108. Praznik W, Mundigler N, Kogler A, Pelzl B, Huber A. Molecular background of technological properties of selected starches. Starch-Starke 51: 197-211 (1999) https://doi.org/10.1002/(SICI)1521-379X(199906)51:6<197::AID-STAR197>3.0.CO;2-K
  109. Thitipraphunkul K, Uttapap D, Piyachomkwan K, Takeda Y. A comparative study of edible canna (Canna edulis) starch from different cultivars. Part I. Chemical composition and physicochemical properties. Carbohyd. Polym. 53: 317-324 (2003) https://doi.org/10.1016/S0144-8617(03)00081-X
  110. Yuan RC, Thompson DB. Freeze-thaw stability of three waxy maize starch pastes measured by centrifugation and calorimetry. Cereal Chem. 75: 571-573 (1998) https://doi.org/10.1094/CCHEM.1998.75.4.571
  111. Zheng GH, Han HL, Bhatty RS. Physicochemical properties of zero amylose hull-less barley starch. Cereal Chem. 75: 520-524 (1998) https://doi.org/10.1094/CCHEM.1998.75.4.520
  112. Varavinit S, Anuntavuttikul S, Shobsngob S. Influence of freezing and thawing techniques on stability of sago and tapioca starch pastes. Starch-Starke 52: 214-217 (2000) https://doi.org/10.1002/1521-379X(200007)52:6/7<214::AID-STAR214>3.0.CO;2-3
  113. Jobling SA, Westcott RJ, Tayal A, Jeffcoat R, Schwall GP. Production of a freeze-thaw-stable potato starch by antisense inhibition of 3 starch synthase genes. Nature Biotechnol. 20: 295- 299 (2002) https://doi.org/10.1038/nbt0302-295
  114. Ferrero C, Martino MN, Zaritzky NE. Stability of frozen starch pastes: Effect of freezing, storage, and xanthan gum addition. J. Food Process Pres. 17: 191-211 (1993) https://doi.org/10.1111/j.1745-4549.1993.tb00839.x
  115. Ferrero C, Martino MN, Zaritzky NE. Corn starch-xanthan gum interaction and its effect on the stability during storage of frozen gelatinized suspensions. Starch-Starke 46: 300-308 (1994) https://doi.org/10.1002/star.19940460805
  116. Navarro S, Martino MN, Zaritzky NE. Effect of freezing rate on the rheological behavior of system based on starch and lipid phase. J. Food Eng. 26: 481-495 (1995) https://doi.org/10.1016/0260-8774(94)00074-J
  117. Pal J, Singhal RS, Kulkarni PR. Physicochemical properties of hydroxypropyl derivative from corn and amaranth starch. Carbohyd. Polym. 48: 49-53 (2002) https://doi.org/10.1016/S0144-8617(01)00209-0
  118. Van Hung P, Morita N. Physicochemical properties of hydroxypropylated and crosslinked starches from A-type and B-type wheat starch granules. Carbohyd. Polym. 59: 239-246 (2005) https://doi.org/10.1016/j.carbpol.2004.09.016
  119. Baker LA, Rayas-Duarte P. Freeze-thaw stability of amaranth starch and the effects of salt and sugars. Cereal Chem. 75: 301-307 (1998) https://doi.org/10.1094/CCHEM.1998.75.3.301
  120. Ciacco CF, Fernandes JLA. Effect of various ions on the kinetics of retrogradation of concentrated wheat starch gels. Starch-Starke 31: 51-53 (1979) https://doi.org/10.1002/star.19790310205
  121. Chang SM, Liu LC. Retrogradation of rice starches studied by differential scanning calorimetry and influence of sugars, sodium chloride, and lipids. J. Food Sci. 56: 564-566, 570 (1991) https://doi.org/10.1111/j.1365-2621.1991.tb05325.x
  122. Schoch TJ, French D. Studies on bread staling. I. The role of starch. Cereal Chem. 24: 231-249 (1947)
  123. Naegeli CW. Contributions to the recent knowledge of the starch group. Liebigs Ann. Chem 173: 218-227 (1874) https://doi.org/10.1002/jlac.18741730208
  124. Lintner CJ. Study over diastase. J. Prakt. Chem. 34: 378-394 (1886) https://doi.org/10.1002/prac.18860340135
  125. Biliaderis CG, Grant DR, Vose JR. Structural characterization of legume starches. II. Studies on acid-treated starches. Cereal Chem. 58: 502-507 (1981)
  126. Robin JP, Mercier C, Charbonniere R, Guilbot A. Lintnerized starches. Gel filtration and enzymic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 51: 389-406 (1974)
  127. Jacobs H, Eerlingen RC, Rouseu N, Colonna P, Delcour JA. Acid hydrolysis of native and annealed wheat, potato, and pea starches - DSC melting features and chain length distributions of lintnerized starches. Carbohyd. Res. 308: 359-371 (1998) https://doi.org/10.1016/S0008-6215(98)00100-1
  128. Srichuwong S, Isono N, Mishima T, Hisamatsu M. Structure of lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid and enzyme hydrolysis of starch granules. Int. J. Biol. Macromol. 37: 115-121 (2005) https://doi.org/10.1016/j.ijbiomac.2005.09.006
  129. Umeki K, Kainuma K. Fine structure of Nageli amylodextrin obtained by acid treatment of defatted waxy-maize starch - structural evidence to support the double-helix hypothesis. Carbohyd. Res. 96: 143-159 (1981) https://doi.org/10.1016/S0008-6215(00)81866-2
  130. Morrison WR, Tester RF, Gidley MJ, Karkalas J. Resistance to acid hydrolysis of lipid-complexed amylose and lipid-free amylose in lintnerized waxy and non-waxy barley starches. Carbohyd. Res. 245: 289-302 (1993) https://doi.org/10.1016/0008-6215(93)80078-S
  131. Hood LF, Mercier C. Molecular structure of unmodified and chemically modified manioc starches. Carbohyd. Res. 61: 53-66 (1978) https://doi.org/10.1016/S0008-6215(00)84466-3
  132. Fox JD, Robyt JF. Modification of starch granules by hydrolysis with hydrochloric acid in various alcohols, and the formation of new kinds of limit dextrins. Carbohyd. Res. 227: 163-170 (1992) https://doi.org/10.1016/0008-6215(92)85068-B
  133. Ma WP, Robyt JF. Preparation and characterization of soluble starches having different molecular sizes and composition, by acid hydrolysis in different alcohols. Carbohyd. Res. 166: 283-297 (1987) https://doi.org/10.1016/0008-6215(87)80064-2
  134. Robyt JF, Choe J, Hahn RS, Fuchs EB. Acid modification of starch granules in alcohols: Effects of temperature, acid concentration, and starch concentration. Carbohyd. Res. 281: 203-218 (1996) https://doi.org/10.1016/0008-6215(95)00347-9
  135. Robyt JF. Enzymes in the hydrolysis and synthesis of starch. pp. 87-123. In: Starch: Chemistry and Technology. Whistler RL, Bemiller JN, Paschall EF (eds). Academic Press, London, UK (1984)
  136. Robyt JF, French D. Multiple attack hypothesis of alpha-amylase action. Action of porcine pancreatic, human salivary, and Aspergillus oryzae alpha-amylases. Arch. Biochem. Biophys. 122: 8-16 (1967) https://doi.org/10.1016/0003-9861(67)90118-X
  137. Jane J, Ao Z, Duvick SA, Wiklund M, Yoo S-H, Wong K-S, Gardner C. Structures of amylopectin and starch granules: How are they synthesized? J. Appl. Glycosci. 50: 167-172 (2003) https://doi.org/10.5458/jag.50.167
  138. Leach HW, Schoch TJ. Structure of the starch granule. II. Action of various amylases on granular starches. Cereal Chem. 38: 34-46 (1961)
  139. Lee Y-T, Chang H-G. The effect of heat treatments on in vitro starch digestibility and resistant starch of selected cereals. Food Sci. Biotechnol. 13: 810-813 (2004)
  140. Evers AD, Juliano BO. Varietal differences in surface ultrastructure of endosperm cells and starch granules of rice. Starch-Starke 28: 160-166 (1976) https://doi.org/10.1002/star.19760280504
  141. Fuwa H, Nakajima M, Hamada A, Glover DV. Comparative susceptibility to amylases of starches from different plant species and several single endosperm mutants and their double-mutant combinations with opaque-2 inbred Oh43 maize. Cereal Chem. 54: 230-237 (1977)
  142. Noda T, Kimura T, Otani M, Ideta O, Shimada T, Saito A, Suda I. Physicochemical properties of amylose-free starch from transgenic sweet potato. Carbohyd. Polym. 49: 253-260 (2002) https://doi.org/10.1016/S0144-8617(01)00343-5
  143. Kimura A, Robyt JF. Reaction of enzymes with starch granules: Kinetics and products of the reaction with glucoamylase. Carbohyd. Res. 277: 87-107 (1995) https://doi.org/10.1016/0008-6215(95)00196-Z
  144. Valetudie JC, Colonna P, Bouchet B, Gallant DJ. Hydrolysis of tropical tuber starches by bacterial and pancreatic alpha-amylases. Starch-Starke 45: 270-276 (1993) https://doi.org/10.1002/star.19930450805
  145. Colonna P, Buleon A, Lemarie F. Action of Bacillus subtilis alpha- amylase on native wheat starch. Biotechnol. Bioeng. 31: 895-904 (1988) https://doi.org/10.1002/bit.260310902
  146. Lauro M, Forssell PM, Suortti MT, Hulleman SHD, Poutanen KS. alpha-Amylolysis of large barley starch granules. Cereal Chem. 76: 925-930 (1999) https://doi.org/10.1094/CCHEM.1999.76.6.925
  147. Gallant DJ, Bouchet B, Buleon A, Perez S. Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur. J. Clin. Nutr. 46: S3-S16 (1992)
  148. Gallant DJ, Derrien A, Aumaitre A, Guibot A. In vitro degradation of starch by pancreatic juice. Starch-Starke 25: 56-64 (1973) https://doi.org/10.1002/star.19730250206
  149. Cui R, Oates CG. The effect of retrogradation on enzyme susceptibility of sago starch. Carbohyd. Polym. 32: 65-72 (1997) https://doi.org/10.1016/S0144-8617(96)00105-1
  150. Cui R, Oates CG. The effect of amylose-lipid complex formation on enzyme susceptibility of sago starch. Food Chem. 65: 417-425 (1999) https://doi.org/10.1016/S0308-8146(97)00174-X
  151. Svensson B. Regional distant sequence homology between amylases, alpha-glucosidases, and transglucanosylases. FEBS Lett. 230: 72-76 (1988) https://doi.org/10.1016/0014-5793(88)80644-6
  152. Hamilton LM, Kelly CT, Fogarty WM. Raw starch degradation by the non-raw starch-adsorbing bacterial alpha amylase of Bacillus sp. IMD 434. Carbohyd. Res. 314: 251-257 (1998) https://doi.org/10.1016/S0008-6215(98)00300-0
  153. Hayashida S, Teramoto Y, Inoue T, Mitsuiki S. Occurrence of an affinity site apart from the active site on the raw-starch-digesting but non-raw-starch-adsorbable Bacillus subtilis 65 alpha-amylase. Appl. Environ. Microb. 56: 2584-2586 (1990)
  154. Noda T, Takahata Y, Nagata T. Factors relating to digestibility of raw starch by amylase. J. Jpn. Soc. Starch Sci. 40: 271-276 (1993) https://doi.org/10.5458/jag1972.40.271
  155. Snow P, O'Dea K. Factors affecting the rate of hydrolysis of starch in food. Am. J. Clin. Nutr. 34: 2721-2727 (1981) https://doi.org/10.1093/ajcn/34.12.2721
  156. Oates CG. Towards an understanding of starch granule structure and hydrolysis. Trends Food. Sci. Tech. 8: 375-382 (1997) https://doi.org/10.1016/S0924-2244(97)01090-X
  157. Badenhuizen NP. Chemistry and biology of the starch granule. pp. 1-74. In: Protoplasmatologia. Heilbrunn LV, Weber F (eds). Springer, Verlag, Vienna, Austria (1959)
  158. Fuwa H, Glover DV, Sugimoto Y, Tanaka M. Comparative susceptibility to amylases of starch granules of several single endosperm mutants representative of floury-opaque, starch-deficient, and modified starch types and their double-mutant combinations with opaque-2 in four inbred lines of maize. J. Nutr. Sci. Vitaminol. 24: 437-448 (1978) https://doi.org/10.3177/jnsv.24.437
  159. Fannon JE, Gray JA, Gunawan N, Huber KC, BeMiller JN. The channels of starch granules. Food Sci. Biotechnol. 12: 700-704 (2003)
  160. Fannon JE, Hauber RJ, BeMiller JN. Surface pores of starch granules. Cereal Chem. 69: 284-288 (1992)
  161. Lauro M, Poutanen K, Forssell P. Effect of partial gelatinization and lipid addition on alpha-amylolysis of barley starch granules. Cereal Chem. 77: 595-601 (2000) https://doi.org/10.1094/CCHEM.2000.77.5.595
  162. Jane J, Atichokudomchai N, Suh DS. Internal structures of starch granules revealed by confocal laser-light scanning microscopy. pp. 147-156. In: Starch: Progress in Structural Studies, Modifications and Applications. Tomasik P, Yuryev VP, Bertoft E (eds). Polish Soc. Food Technologists, Cracow, Poland (2004)
  163. Hizukuri S, Kaneko T, Takeda Y. Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules. BBA-Gen. Subjects 760: 188- 191 (1983) https://doi.org/10.1016/0304-4165(83)90142-3