DOI QR코드

DOI QR Code

Surface Morphology of AlSb on GaAs Grown by Molecular Beam Epitaxy and Real-time Growth Monitoring by in situ Ellipsometry

  • Kim, Jun Young (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Lim, Ju Young (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology) ;
  • Kim, Young Dong (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Song, Jin Dong (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology)
  • Received : 2017.11.10
  • Accepted : 2017.11.29
  • Published : 2017.11.30

Abstract

AlSb is a promising material for optical devices, particularly for high-frequency and nonlinear-optical applications. We report the effect of growth temperature on structural properties of AlSb grown on GaAs substrate. In particular we studied the surface of AlSb with the growth temperature by atomic force microscopy, and concluded that optimized growth temperature of AlSb is $530^{\circ}C$. We also show the result of real-time monitoring of AlSb growth by in situ ellipsometry. The results of the structural study are good agreement with the previous reported ellipsometric data.

Keywords

References

  1. B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, Solid-state Electronics. 49, 1875 (2005) https://doi.org/10.1016/j.sse.2005.09.008
  2. Z. Dobrovolskis, K. Grigoras, and A. Krotkus, Appl. Phys. A: Solids Surf. 48, 245 (1989). https://doi.org/10.1007/BF00619393
  3. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001). https://doi.org/10.1063/1.1368156
  4. A. G. Milnes and A. Y. Polyakov, Mater. Sci. Eng. B 18, 237 (1993). https://doi.org/10.1016/0921-5107(93)90140-I
  5. Yu. G. Sadofyev, A. Ramamoorthy, B. Naser, J. P. Bird, S. R. Johnson, and Y-H. Zhang, Appl. Phys. Lett. 81, 1833 (2002). https://doi.org/10.1063/1.1504882
  6. P. R. Hammar, and M. Johnson, Phys. Rev. Lett. 88, 066806-1 (2002). https://doi.org/10.1103/PhysRevLett.88.066806
  7. A. Zakharova, I. Lapushkin, K. Nilsson, S. T. Yen, and K. A. Chao, Phys. Rev. B 73, 125337 (2006). https://doi.org/10.1103/PhysRevB.73.125337
  8. J. B. Boos, B. R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, R. Bass, and B. V. Shanabrook, Electronics Letters 43 (2007) 834. https://doi.org/10.1049/el:20071305
  9. B. R. Bennett, M. G. Ancona, and J. B. Boos, Mrs Bulletin 34 (2009) 530. https://doi.org/10.1557/mrs2009.141
  10. H. Rodilla, T. Gonzalez, D. Pardo, and J. Mateos, J. Appl. Phys. 105, 113705 (20009). https://doi.org/10.1063/1.3132863
  11. G. Tuttle, H. Kroemer and J. H. English, J. Appl. Phys. 67, 3032 (1990). https://doi.org/10.1063/1.345426
  12. B. R. Bennett, B. V. Shanabrook, and E. R. Glaser, Appl. Phys. Lett. 65, 598 (1994). https://doi.org/10.1063/1.112955
  13. S. H. Shin, J. Y. Lim, J. D. Song, H. J. Kim, S. H. Han, and T. G. Kim, J. Korean Phys. Soc. 53, 2719 (2008). https://doi.org/10.3938/jkps.53.2719
  14. B. P. Tinkham, B. R. Bennett, R. Magno, B. V. Shanabrook, and J. B. Boos, J. Vac. Sci. Technol. B 23, 1441 (2005). https://doi.org/10.1116/1.1941147
  15. B. R. Bennett, B. P. Tinkham, J. B. Boos, M. D. Lange, and R. Tsai, J. Vac. Sci. Technol. B 22, 688 (2004). https://doi.org/10.1116/1.1667507
  16. A. Tahraoui, P. Tomasini, L. Lassabatere, and J. Bonnet, Appl. Surf. Sci. 162-163, 425 (2000). https://doi.org/10.1016/S0169-4332(00)00227-0
  17. Y. W. Jung, T. H. Ghong, J. S. Byun, Y. D. Kim, H. J. Kim, Y. C. Chang, S. H. Shin, and J. D. Song, Appl. Phys. Lett. 94, 231913 (2009). https://doi.org/10.1063/1.3153127
  18. Y. C. Lin, H. Yamaguchi, E. Y. Chang, Y. C. Hsieh, M. Ueki, Y. Hirayama, and C. Y. Chang, Appl. Phys. Lett. 90, 023509 (2007). https://doi.org/10.1063/1.2431567
  19. C. Nguyen, B. Brar, C. R. Bolognesi, J. J. Pekarik, H. Kroemer, and J. H. English J. Electronic Materials 22, 255 (1993). https://doi.org/10.1007/BF02665035