Browse > Article

Physicochemical Properties of Starch Affected by Molecular Composition and Structures: A Review  

Srichuwong, Sathaporn (Department of Food Science and Human Nutrition, Iowa State University)
Jane, Jay-Iin (Department of Food Science and Human Nutrition, Iowa State University)
Publication Information
Food Science and Biotechnology / v.16, no.5, 2007 , pp. 663-674 More about this Journal
Abstract
Starches from different botanical sources differ in the ratio of amylose to amylopectin contents, molecular structures of amylose and amylopectin, granule morphology, and minor-component contents. These structural features result in different gelatinization, pasting, retrogradation properties, and enzyme digestibility of starch granules. In this review, compositions and molecular structures of starches and their effects on the physicochemical properties are summarized and discussed.
Keywords
starch; amylase; amylopectin; composition; gelatinization; retrogradation; pasting property; syneresis; enzyme digestibility;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 27  (Related Records In Web of Science)
Times Cited By SCOPUS : 25
연도 인용수 순위
1 Imberty A, Chanzy H, Perez S, Buleon A, Tran V. The doublehelical nature of the crystalline part of A-starch. J. Mol. Biol. 201: 365-378 (1988)   DOI
2 Hizukuri S. Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohyd. Res. 141: 295-306 (1985)   DOI   ScienceOn
3 Kasemsuwan T, Jane J. Location of amylose in normal starch granules. II. Locations of phosphodiester crosslinking revealed by phosphorus-31 nuclear magnetic resonance. Cereal Chem. 71: 282- 287 (1994)
4 Jane J, Shen JJ. Internal structure of the potato starch granule revealed by chemical gelatinization. Carbohyd. Res. 247: 279-290 (1993)   DOI   ScienceOn
5 Liu H, Lelievre J. A model of starch gelatinization linking differential scanning calorimetry and birefringence measurements. Carbohyd. Polym. 20: 1-5 (1993)   DOI   ScienceOn
6 Ring SG, Miles MJ, Morris VJ, Turner R, Colonna P. Spherulitic crystallization of short chain amylose. Int. J. Biol. Macromol. 9: 158-160 (1987)   DOI   ScienceOn
7 Kohyama K, Nishinari K. Effect of soluble sugars on gelatinization and retrogradation of sweet potato starch. J. Agr. Food. Chem. 39: 1406-1410 (1991)   DOI
8 Nakazawa Y, Wang Y-j. Acid hydrolysis of native and annealed starches and branch-structure of their Naegeli dextrins. Carbohyd. Res. 338: 2871-2882 (2003)   DOI   ScienceOn
9 Maher GG. Alkali gelatinization of starches. Starch-Starke 35: 226- 234 (1983)   DOI
10 Koch K, Jane J. Morphological changes of granules of different starches by surface gelatinization with calcium chloride. Cereal Chem. 77: 115-120 (2000)   DOI
11 Rasper V. Theoretical aspects of amylographology. pp. 1-6. In: The Amylograph Handbook. Shuey WC, Tipples KE (eds). American Association of Cereal Chemists, St. Paul, MN, USA (1980)
12 Reddy KR, Subramanian R, Ali SZ, Bhattacharya KR. Viscoelastic properties of rice-flour pastes and their relationship to amylose content and rice quality. Cereal Chem. 71: 548-552 (1994)
13 Vandeputte GE, Derycke V, Geeroms J, Delcour JA. Rice starches. II. Structural aspects provide insight into swelling and pasting properties. J. Cereal Sci. 38: 53-59 (2003)   DOI   ScienceOn
14 Jane J, Kasemsuwan T, Chen JF, Juliano BO. Phosphorus in rice and other starches. Cereal Food World 41: 827-832 (1996)
15 Eberstein K, Hoepcke R, Konieczny-Janda G, Stute R. DSC studies on starches. Part I. Possible thermoanalytical methods for characterizing starches. Starch-Starke 32: 397-404 (1980)   DOI
16 Eliasson AC. Retrogradation of starch as measured by differential scanning colorimetry. pp. 93-98. In: New Approaches to Research on Cereal Carbohydrates. Hill RD, Munck L (eds). Elsevier, Amsterdam, Netherlands (1985)
17 Würsch P, Gumy D. Inhibition of amylopectin retrogradation by partial beta-amylolysis. Carbohyd. Res. 256: 129-137 (1994)   DOI   ScienceOn
18 Banks W, Greenwood CT. Starch and Its Components. Edinburgh University Press, Edinburgh, Great Britian. pp 77-79 (1975)
19 Thygesen LG, Blennow A, Engelsen SB. The effects of amylose and starch phosphate on starch gel retrogradation studied by lowfield 1H NMR relaxometry. Starch-Starke 55: 241-249 (2003)
20 Slade L, Levine H. Recent advances in starch retrogradation. pp. 387-430. In: Industrial Polysaccharides. The Impact of Biotechnology and Advanced Methodologies. Stivala SS, Crescenzi V, Dea ICM (eds). Gordon and Breach, New York, NY, USA (1987)
21 Baker LA, Rayas-Duarte P. Retrogradation of amaranth starch at different storage temperatures and the effects of salt and sugars. Cereal Chem. 75: 308-314 (1998)   DOI
22 Ferrero C, Martino MN, Zaritzky NE. Stability of frozen starch pastes: Effect of freezing, storage, and xanthan gum addition. J. Food Process Pres. 17: 191-211 (1993)   DOI   ScienceOn
23 Navarro S, Martino MN, Zaritzky NE. Effect of freezing rate on the rheological behavior of system based on starch and lipid phase. J. Food Eng. 26: 481-495 (1995)   DOI   ScienceOn
24 Chang SM, Liu LC. Retrogradation of rice starches studied by differential scanning calorimetry and influence of sugars, sodium chloride, and lipids. J. Food Sci. 56: 564-566, 570 (1991)   DOI
25 Lintner CJ. Study over diastase. J. Prakt. Chem. 34: 378-394 (1886)   DOI
26 Jacobs H, Eerlingen RC, Rouseu N, Colonna P, Delcour JA. Acid hydrolysis of native and annealed wheat, potato, and pea starches - DSC melting features and chain length distributions of lintnerized starches. Carbohyd. Res. 308: 359-371 (1998)   DOI   ScienceOn
27 Srichuwong S, Isono N, Mishima T, Hisamatsu M. Structure of lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid and enzyme hydrolysis of starch granules. Int. J. Biol. Macromol. 37: 115-121 (2005)   DOI   ScienceOn
28 Robyt JF. Enzymes in the hydrolysis and synthesis of starch. pp. 87-123. In: Starch: Chemistry and Technology. Whistler RL, Bemiller JN, Paschall EF (eds). Academic Press, London, UK (1984)
29 Colonna P, Buleon A, Lemarie F. Action of Bacillus subtilis alpha- amylase on native wheat starch. Biotechnol. Bioeng. 31: 895-904 (1988)   DOI   ScienceOn
30 Fuwa H, Nakajima M, Hamada A, Glover DV. Comparative susceptibility to amylases of starches from different plant species and several single endosperm mutants and their double-mutant combinations with opaque-2 inbred Oh43 maize. Cereal Chem. 54: 230-237 (1977)
31 Lauro M, Forssell PM, Suortti MT, Hulleman SHD, Poutanen KS. alpha-Amylolysis of large barley starch granules. Cereal Chem. 76: 925-930 (1999)   DOI
32 Badenhuizen NP. Chemistry and biology of the starch granule. pp. 1-74. In: Protoplasmatologia. Heilbrunn LV, Weber F (eds). Springer, Verlag, Vienna, Austria (1959)
33 Fannon JE, Gray JA, Gunawan N, Huber KC, BeMiller JN. The channels of starch granules. Food Sci. Biotechnol. 12: 700-704 (2003)
34 Hizukuri S, Kaneko T, Takeda Y. Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules. BBA-Gen. Subjects 760: 188- 191 (1983)   DOI   ScienceOn
35 Ciacco CF, Fernandes JLA. Effect of various ions on the kinetics of retrogradation of concentrated wheat starch gels. Starch-Starke 31: 51-53 (1979)   DOI
36 Perera C, Lu Z, Sell J, Jane J. Comparison of physicochemical properties and structures of sugary-2 cornstarch with normal and waxy cultivars. Cereal Chem. 78: 249-256 (2001)   DOI
37 Atwell WA, Hood LF, Lineback DR, Varriano-Marston E, Zobel HF. The terminology and methodology associated with basic starch phenomena. Cereal Food World 33: 306-311 (1988)
38 Noda T, Takahata Y, Sato T, Suda I, Morishita T, Ishiguro K, Yamakawa O. Relationships between chain length distribution of amylopectin and gelation properties within the same botanical origin for sweet potato and buckwheat. Carbohyd. Polym. 37: 153- 158 (1998)   DOI   ScienceOn
39 Shi Y-C, Seib PA. Fine structure of maize starches from four wxcontaining genotypes of the W64A inbred line in relation to gelatinization and retrogradation. Carbohyd. Polym. 26: 141-147 (1995)   DOI   ScienceOn
40 Kalichevsky MT, Orford PD, Ring SG. The retrogradation and gelation of amylopectins from various botanical sources. Carbohyd. Res. 198: 49-55 (1990)   DOI   ScienceOn
41 Schoch TJ, French D. Studies on bread staling. I. The role of starch. Cereal Chem. 24: 231-249 (1947)
42 Yamaguchi M, Kainuma K, French D. Electron microscopic observations of waxy maize starch. J. Ultrastruct. Res. 69: 249-261 (1979)   DOI
43 Noda T, Takahata Y, Nagata T. Factors relating to digestibility of raw starch by amylase. J. Jpn. Soc. Starch Sci. 40: 271-276 (1993)   DOI   ScienceOn
44 Ji Y, Seetharaman K, Wong K, Pollak LM, Duvick S, Jane J, White PJ. Thermal and structural properties of unusual starches from developmental corn lines. Carbohyd. Polym. 51: 439-450 (2003)   DOI   ScienceOn
45 Takeda Y, Hizukuri S. Studies on starch phosphate. Part 6. Location of phosphate groups in potato amylopectin. Carbohyd. Res. 102: 321-327 (1982)   DOI   ScienceOn
46 Tester RF, Morrison WR. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 67: 551-557 (1990)
47 Han X-Z, Hamaker BR. Amylopectin fine structure and rice starch paste breakdown. J. Cereal Sci. 34: 279-284 (2001)   DOI   ScienceOn
48 Gidley MJ, Bulpin PV. Aggregation of amylose in aqueous systems: The effect of chain length on phase behavior and aggregation kinetics. Macromolecules 22: 341-346 (1989)   DOI   ScienceOn
49 Russell PL. The aging of gels from starches of different amylose/ amylopectin content studied by differential scanning calorimetry. J. Cereal Sci. 6: 147-158 (1987)   DOI
50 Kainuma K, French D. Naegeli amylodextrin and its relation to starch granule structure. I. Preparation and properties of amylodextrins from various starch types. Biopolymers 10: 1673-1680 (1971)   DOI
51 Sasaki T, Yasui T, Matsuki J. Effect of amylose content on gelatinization, retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal Chem. 77: 58-63 (2000)   DOI
52 Lee HA, Kim NH, Nishinari K. DSC and rheological studies of the effects of sucrose on the gelation and retrogradation of acorn starch. Thermochim. Acta 322: 39-46 (1998)   DOI   ScienceOn
53 Franco CML, Wong K-S, Yoo S-H, Jane J. Structural and functional characteristics of selected soft wheat starches. Cereal Chem. 79: 243-248 (2002)   DOI
54 Yuan RC, Thompson DB. Freeze-thaw stability of three waxy maize starch pastes measured by centrifugation and calorimetry. Cereal Chem. 75: 571-573 (1998)   DOI
55 Kainuma K, Yamamoto K, Suzuki S, Takaya T, Fuwa H. Studies on structure and physico-chemical properties of starch. Part IV: Structural, chemical, and rheological properties of air classified small and large granule of potato starch. J. Jpn. Soc. Starch Sci. 25: 3-11 (1978)   DOI
56 Zeleznak KJ, Hoseney RC. The role of water in the retrogradation of wheat starch gels and bread crumb. Cereal Chem. 63: 407-411 (1986)
57 Eliasson A-C, Gudmundsson M. Starch: Physicochemical and functional aspects. pp. 391-469. In: Carbohydrates in Food. Eliasson AC (ed). CRC Press, Boca Raton, FL, USA (2006)
58 Sarko A, Wu H-C. The crystal structures of A-, B-, and Cpolymorphs of amylose and starch. Starch-Starke 30: 73-78 (1978)   DOI
59 Brennan JG, Sodah-Ayernor G. A study of the kinetics of retrogradation in a starch-based dough made from dehydrated yam (Dioscorea rotundata L. Poir). Starch-Starke 25: 276-280 (1973)   DOI
60 Baker LA, Rayas-Duarte P. Freeze-thaw stability of amaranth starch and the effects of salt and sugars. Cereal Chem. 75: 301-307 (1998)   DOI
61 Gallant DJ, Bouchet B, Buleon A, Perez S. Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur. J. Clin. Nutr. 46: S3-S16 (1992)
62 Hizukuri S. Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohyd. Res. 147: 342-347 (1986)   DOI   ScienceOn
63 Li L, Blanco M, Jane J. Physicochemical properties of endosperm and pericarp starches during maize development. Carbohyd. Polym. 67: 630-639 (2007)   DOI   ScienceOn
64 Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M. Starches from different botanical sources II: Contribution of starch structure to swelling and pasting properties. Carbohyd. Polym. 62: 25-34 (2005)   DOI   ScienceOn
65 Sievert D, Wuersch P. Amylose chain association based on differential scanning calorimetry. J. Food Sci. 58: 1332-1334 (1993)   DOI   ScienceOn
66 Silverio J, Fredriksson H, Andersson R, Eliasson AC, Aman P. The effect of temperature cycling on the amylopectin retrogradation of starches with different amylopectin unit-chain length distribution. Carbohyd. Polym. 42: 175-184 (2000)   DOI   ScienceOn
67 Fuwa H, Glover DV, Sugimoto Y, Tanaka M. Comparative susceptibility to amylases of starch granules of several single endosperm mutants representative of floury-opaque, starch-deficient, and modified starch types and their double-mutant combinations with opaque-2 in four inbred lines of maize. J. Nutr. Sci. Vitaminol. 24: 437-448 (1978)   DOI
68 Yoon J-I, Kim S-K. Effect of annealing on pasting properties and gel hardness of mung bean starch. Food Sci. Biotechnol. 12: 526-532 (2003)
69 Derek R, Prentice M, Stark JR, Gidley MJ. Granule residues and 'ghosts' remaining after heating A-type barley-starch granules in water. Carbohyd. Res. 227: 121-130 (1992)   DOI   ScienceOn
70 Ferrero C, Martino MN, Zaritzky NE. Corn starch-xanthan gum interaction and its effect on the stability during storage of frozen gelatinized suspensions. Starch-Starke 46: 300-308 (1994)   DOI   ScienceOn
71 Kimura A, Robyt JF. Reaction of enzymes with starch granules: Kinetics and products of the reaction with glucoamylase. Carbohyd. Res. 277: 87-107 (1995)   DOI   ScienceOn
72 Yoo S-H, Jane J. Structural and physical characteristics of waxy and other wheat starches. Carbohyd. Polym. 49: 297-305 (2002)   DOI   ScienceOn
73 Lee Y-T, Chang H-G. The effect of heat treatments on in vitro starch digestibility and resistant starch of selected cereals. Food Sci. Biotechnol. 13: 810-813 (2004)
74 Snow P, O'Dea K. Factors affecting the rate of hydrolysis of starch in food. Am. J. Clin. Nutr. 34: 2721-2727 (1981)   DOI
75 Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 76: 629-637 (1999)   DOI
76 Donovan JW. Phase transitions of the starch-water system. Biopolymers 18: 263-275 (1979)   DOI
77 Shi Y-C, Seib PA. The structure of four waxy starches related to gelatinization and retrogradation. Carbohyd. Res. 227: 131-145 (1992)   DOI   ScienceOn
78 Jane J, Wong K-S, McPherson AE. Branch-structure difference in starches of A- and B-type x-ray patterns revealed by their Naegeli dextrins. Carbohyd. Res. 300: 219-227 (1997)   DOI   ScienceOn
79 Whittam MA, Noel TR, Ring SG. Melting behavior of A- and Btype crystalline starch. Int. J. Biol. Macromol. 12: 359-362 (1990)   DOI   ScienceOn
80 Robin JP, Mercier C, Charbonniere R, Guilbot A. Lintnerized starches. Gel filtration and enzymic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 51: 389-406 (1974)
81 Araki E, Miura H, Sawada S. Differential effects of the null alleles at the three Wx loci on the starch-pasting properties of wheat. Theor. Appl. Genet. 100: 1113-1120 (2000)   DOI
82 Jane J. Starch: Structures and properties. pp. 81-101. In: Chemical and Functional Properties of Food Saccharides. Tomasik P (ed). CRC Press, Boca Raton, FL, USA (2004)
83 Wong K-S, Kubo A, Jane J, Harada K, Satoh H, Nakamura Y. Structures and properties of amylopectin and phytoglycogen in the endosperm of sugary-1 mutants of rice. J. Cereal Sci. 37: 139-149 (2003)   DOI   ScienceOn
84 Jane J, Ao Z, Duvick SA, Wiklund M, Yoo S-H, Wong K-S, Gardner C. Structures of amylopectin and starch granules: How are they synthesized? J. Appl. Glycosci. 50: 167-172 (2003)   DOI   ScienceOn
85 French D. Organization of starch granules. pp. 183-247. In: Starch Chemistry and Technology. Whistler RL, Bemiller JN, Paschall EF (eds). Academic Press, New York, NY, USA (1984)
86 Pfannemuller B. Influence of chain length of short monodisperse amyloses on the formation of A- and B-type x-ray diffraction patterns. Int. J. Biol. Macromol. 9: 105-108 (1987)   DOI   ScienceOn
87 Tsai M-L, Li C-F, Lii C-Y. Effects of granular structures on the pasting behaviors of starches. Cereal Chem. 74: 750-757 (1997)   DOI
88 Jane J, Kasemsuwan T, Leas S, Zobel H, Robyt JF. Anthology of starch granule morphology by scanning electron microscopy. Starch-Starke 46: 121-129 (1994)   DOI   ScienceOn
89 Kim N-H, Yoo S-H. Molecular structure and gelatinization properties of turnip starch (Brassica rapa L.). Food Sci. Biotechnol. 14: 470- 473 (2005)
90 Biliaderis CG, Grant DR, Vose JR. Structural characterization of legume starches. II. Studies on acid-treated starches. Cereal Chem. 58: 502-507 (1981)
91 Lim S, Kasemsuwan T, Jane J. Characterization of phosphorus in starch by 31P-nuclear magnetic resonance spectroscopy. Cereal Chem. 71: 488-493 (1994)
92 Robyt JF, Choe J, Hahn RS, Fuchs EB. Acid modification of starch granules in alcohols: Effects of temperature, acid concentration, and starch concentration. Carbohyd. Res. 281: 203-218 (1996)   DOI   ScienceOn
93 Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M. Starches from different botanical sources I: Contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohyd. Polym. 60: 529-538 (2005)   DOI   ScienceOn
94 Wu H-CH, Sarko A. Packing analysis of carbohydrates and polysaccharides. VIII. The double-helical molecular structure of crystalline B-amylose. Carbohyd. Res. 61: 7-25 (1978)   DOI   ScienceOn
95 Kosson R, Czuchajowska Z, Pomeranz Y. Smooth and wrinkled peas. 1. General physical and chemical characteristics. J. Agr. Food. Chem. 42: 91-95 (1994)   DOI   ScienceOn
96 Fujita S, Sugimoto Y, Yamashita Y, Fuwa H. Physicochemical studies of starch from foxtail millet (Setaria italica Beauv.). Food Chem. 55: 209-213 (1996)   DOI   ScienceOn
97 Edwards A, Fulton DC, Hylton CM, Jobling SA, Gidley M, Rossner U, Martin C, Smith AM. A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant J. 17: 251-261 (1999)   DOI   ScienceOn
98 Morrison WR, Law RV, Snape CE. Evidence for inclusion complexes of lipids with V-amylose in maize, rice, and oat starches. J. Cereal Sci. 18: 107-109 (1993)   DOI   ScienceOn
99 Longton J, LeGrys GA. Differential scanning calorimetry studies on the crystallinity of ageing wheat starch gels. Starch-Starke 33: 410-414 (1981)   DOI
100 Doublier JL. Rheological studies on starch - flow behavior of wheat starch pastes. Starch-Starke 33: 415-420 (1981)   DOI
101 Noda T, Tohnooka T, Taya S, Suda I. Relationship between physicochemical properties of starches and white salted noodle quality in Japanese wheat flours. Cereal Chem. 78: 395-399 (2001)   DOI
102 Van Hung P, Morita N. Physicochemical properties of hydroxypropylated and crosslinked starches from A-type and B-type wheat starch granules. Carbohyd. Polym. 59: 239-246 (2005)   DOI   ScienceOn
103 Leach HW, Schoch TJ. Structure of the starch granule. II. Action of various amylases on granular starches. Cereal Chem. 38: 34-46 (1961)
104 Lauro M, Poutanen K, Forssell P. Effect of partial gelatinization and lipid addition on alpha-amylolysis of barley starch granules. Cereal Chem. 77: 595-601 (2000)   DOI
105 Noda T, Tsuda S, Mori M, Takigawa S, Matsuura-Endo C, Hashimoto N, Yamauchi H. Properties of starches from potato varieties grown in Hokkaido. J. Appl. Glycosci. 51: 241-246 (2004)   DOI   ScienceOn
106 Bhandari PN, Singhal RS. Effect of succinylation on the corn and amaranth starch pastes. Carbohyd. Polym. 48: 233-240 (2002)   DOI   ScienceOn
107 Jobling SA, Westcott RJ, Tayal A, Jeffcoat R, Schwall GP. Production of a freeze-thaw-stable potato starch by antisense inhibition of 3 starch synthase genes. Nature Biotechnol. 20: 295- 299 (2002)   DOI   ScienceOn
108 Robyt JF, French D. Multiple attack hypothesis of alpha-amylase action. Action of porcine pancreatic, human salivary, and Aspergillus oryzae alpha-amylases. Arch. Biochem. Biophys. 122: 8-16 (1967)   DOI   ScienceOn
109 Jane J, Robyt JF. Structure studies of amylose-V complexes and retrograded amylose by action of alpha amylases, and a new method for preparing amylodextrins. Carbohyd. Res. 132: 105-118 (1984)   DOI   ScienceOn
110 Zobel HF. Molecules to granules: A comprehensive starch review. Starch-Starke 40: 44-50 (1988)   DOI
111 Naegeli CW. Contributions to the recent knowledge of the starch group. Liebigs Ann. Chem 173: 218-227 (1874)   DOI
112 Fannon JE, Hauber RJ, BeMiller JN. Surface pores of starch granules. Cereal Chem. 69: 284-288 (1992)
113 Imberty A, Buleon A, Vinh T, Perez S. Recent advances in knowledge of starch structure. Starch-Starke 43: 375-384 (1991)   DOI
114 Imberty A, Perez S. A revisit to the three-dimensional structure of B-type starch. Biopolymers 27: 1205-1221 (1988)   DOI
115 Kasemsuwan T, Jane J. Quantitative method for the survey of starch phosphate derivatives and starch phospholipids by 31P nuclear magnetic resonance spectroscopy. Cereal Chem. 73: 702-707 (1996)
116 Jane J, Shen L, Chen J, Lim S, Kasemsuwan T, Nip WK. Physical and chemical studies of taro starches and flours. Cereal Chem. 69: 528-535 (1992)
117 Praznik W, Mundigler N, Kogler A, Pelzl B, Huber A. Molecular background of technological properties of selected starches. Starch-Starke 51: 197-211 (1999)   DOI
118 Pal J, Singhal RS, Kulkarni PR. Physicochemical properties of hydroxypropyl derivative from corn and amaranth starch. Carbohyd. Polym. 48: 49-53 (2002)   DOI   ScienceOn
119 Umeki K, Kainuma K. Fine structure of Nageli amylodextrin obtained by acid treatment of defatted waxy-maize starch - structural evidence to support the double-helix hypothesis. Carbohyd. Res. 96: 143-159 (1981)   DOI   ScienceOn
120 Noda T, Kimura T, Otani M, Ideta O, Shimada T, Saito A, Suda I. Physicochemical properties of amylose-free starch from transgenic sweet potato. Carbohyd. Polym. 49: 253-260 (2002)   DOI   ScienceOn
121 Takeda Y, Shirasaka K, Hizukuri S. Examination of the purity and structure of amylose by gel-permeation chromatography. Carbohyd. Res. 132: 83-92 (1984)   DOI   ScienceOn
122 Jane J, Xu A, Radosavljevic M, Seib PA. Location of amylose in normal starch granules. I. Susceptibility of amylose and amylopectin to cross-linking reagents. Cereal Chem. 69: 405-409 (1992)
123 Hizukuri S. Starch: Analytical aspects. pp. 305-390. In: Carbohydrates in Food. Eliasson AC (ed). CRC Press, Boca Raton, FL, USA (2006)
124 Nakamura Y, Sakurai A, Inaba Y, Kimura K, Iwasawa N, Nagamine T. The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes. Starch-Starke 54: 117-131 (2002)   DOI   ScienceOn
125 Collado LS, Mabesa RC, Corke H. Genetic variation in the physical properties of sweet potato starch. J. Agr. Food. Chem. 47: 4195- 4201 (1999)   DOI   ScienceOn
126 Valetudie JC, Colonna P, Bouchet B, Gallant DJ. Hydrolysis of tropical tuber starches by bacterial and pancreatic alpha-amylases. Starch-Starke 45: 270-276 (1993)   DOI   ScienceOn
127 Whisler RL, BeMiller JN. Starch. pp. 117-151. In: Carbohydrate Chemistry for Food Scientists. Whisler RL, BeMiller JN (eds). American Association of Cereal Chemists, St. Paul, MN, USA (1997)
128 Jane J, Chen JF. Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch. Cereal Chem. 69: 60-65 (1992)
129 Cui R, Oates CG. The effect of amylose-lipid complex formation on enzyme susceptibility of sago starch. Food Chem. 65: 417-425 (1999)   DOI   ScienceOn
130 Ring SG, Colonna P, I'Anson KJ, Kalichevsky MT, Miles MJ, Morris VJ, Orford PD. The gelation and crystallization of amylopectin. Carbohyd. Res. 162: 277-293 (1987)   DOI   ScienceOn
131 Yamamoto K, Sugai Y, Onogaki T. The rheological properties of starch pastes and gels obtained from air classified potato starches. J. Jpn. Soc. Starch Sci. 29: 277-286 (1982)   DOI
132 Takeda Y, Hizukuri S, Takeda C, Suzuki A. Structures of branched molecules of amyloses of various origins, and molar fractions of branched and unbranched molecules. Carbohyd. Res. 165: 139-145 (1987)   DOI   ScienceOn
133 Pan DD, Jane J. Internal structure of normal maize starch granules revealed by chemical surface gelatinization. Biomacromolecules 1: 126-132 (2000)   DOI   ScienceOn
134 Kasemsuwan T, Jane J, Schnable P, Stinard P, Robertson D. Characterization of the dominant mutant amylose-extender (Ae1- 5180) maize starch. Cereal Chem. 72: 457-464 (1995)
135 Yuan RC, Thompson DB, Boyer CD. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx-containing genotypes in two inbred lines. Cereal Chem. 70: 81-89 (1993)
136 Blanshard JMV. Starch granule structure and function: A physicochemical approach. pp. 16-54. In: Starch: Properties and Potential. Galliard T (ed). John Wiley & Sons , Chichester, OH, USA (1986)
137 Morrison WR, Tester RF, Gidley MJ, Karkalas J. Resistance to acid hydrolysis of lipid-complexed amylose and lipid-free amylose in lintnerized waxy and non-waxy barley starches. Carbohyd. Res. 245: 289-302 (1993)   DOI   ScienceOn
138 Evers AD, Juliano BO. Varietal differences in surface ultrastructure of endosperm cells and starch granules of rice. Starch-Starke 28: 160-166 (1976)   DOI
139 Jane J, Atichokudomchai N, Suh DS. Internal structures of starch granules revealed by confocal laser-light scanning microscopy. pp. 147-156. In: Starch: Progress in Structural Studies, Modifications and Applications. Tomasik P, Yuryev VP, Bertoft E (eds). Polish Soc. Food Technologists, Cracow, Poland (2004)
140 Oates CG. Towards an understanding of starch granule structure and hydrolysis. Trends Food. Sci. Tech. 8: 375-382 (1997)   DOI   ScienceOn
141 Cui R, Oates CG. The effect of retrogradation on enzyme susceptibility of sago starch. Carbohyd. Polym. 32: 65-72 (1997)   DOI   ScienceOn
142 Gidley MJ, Bulpin PV. Crystallization of malto-oligosaccharides as models of the crystalline forms of starch: Minimum chain-length requirement for the formation of double helixes. Carbohyd. Res. 161: 291-300 (1987)   DOI   ScienceOn
143 Ahmad FB, Williams PA. Effect of salts on the gelatinization and rheological properties of sago starch. J. Agr. Food. Chem. 47: 3359- 3366 (1999)   DOI   ScienceOn
144 Debet MR, Gidley MJ. Three classes of starch granule swelling: Influence of surface proteins and lipids. Carbohyd. Polym. 64: 452- 465 (2006)   DOI   ScienceOn
145 Thitipraphunkul K, Uttapap D, Piyachomkwan K, Takeda Y. A comparative study of edible canna (Canna edulis) starch from different cultivars. Part I. Chemical composition and physicochemical properties. Carbohyd. Polym. 53: 317-324 (2003)   DOI   ScienceOn
146 Gallant DJ, Derrien A, Aumaitre A, Guibot A. In vitro degradation of starch by pancreatic juice. Starch-Starke 25: 56-64 (1973)   DOI
147 Hood LF, Mercier C. Molecular structure of unmodified and chemically modified manioc starches. Carbohyd. Res. 61: 53-66 (1978)   DOI   ScienceOn
148 Hamilton LM, Kelly CT, Fogarty WM. Raw starch degradation by the non-raw starch-adsorbing bacterial alpha amylase of Bacillus sp. IMD 434. Carbohyd. Res. 314: 251-257 (1998)   DOI   ScienceOn
149 Zheng GH, Han HL, Bhatty RS. Physicochemical properties of zero amylose hull-less barley starch. Cereal Chem. 75: 520-524 (1998)   DOI
150 Varavinit S, Anuntavuttikul S, Shobsngob S. Influence of freezing and thawing techniques on stability of sago and tapioca starch pastes. Starch-Starke 52: 214-217 (2000)   DOI   ScienceOn
151 Ma WP, Robyt JF. Preparation and characterization of soluble starches having different molecular sizes and composition, by acid hydrolysis in different alcohols. Carbohyd. Res. 166: 283-297 (1987)   DOI   ScienceOn
152 Ahmad FB, Williams PA. Effect of sugars on the thermal and rheological properties of sago starch. Biopolymers 50: 401-412 (1999)   DOI   ScienceOn
153 Svensson B. Regional distant sequence homology between amylases, alpha-glucosidases, and transglucanosylases. FEBS Lett. 230: 72-76 (1988)   DOI   ScienceOn
154 Yoo S-H, Jane J. Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors. Carbohyd. Polym. 49: 307-314 (2002)   DOI   ScienceOn
155 Takeda Y, Preiss J. Structures of B90 (sugary) and W64A (normal) maize starches. Carbohyd. Res. 240: 265-275 (1993)   DOI   ScienceOn
156 Vandeputte GE, Vermeylen R, Geeroms J, Delcour JA. Rice starches. I. Structural aspects provide insight into crystallinity characteristics and gelatinisation behaviour of granular starch. J. Cereal Sci. 38: 43-52 (2003)   DOI   ScienceOn
157 Galliard T, Bowler P. Morphology and composition of starch. pp. 55-78. In: Starch: Properties and Potential; Critical Reports on Applied Chemistry. Galliard T (ed). Wiley Interscience, New York, NY, USA (1987)
158 Hayashida S, Teramoto Y, Inoue T, Mitsuiki S. Occurrence of an affinity site apart from the active site on the raw-starch-digesting but non-raw-starch-adsorbable Bacillus subtilis 65 alpha-amylase. Appl. Environ. Microb. 56: 2584-2586 (1990)
159 Inouchi N, Glover DV, Takaya T, Fuwa H. Development changes in fine structure of starches of several endosperm mutants of maize. Starch-Starke 35: 371-376 (1983)   DOI
160 Morrison WR. Starch lipids and how they relate to starch granule structure and functionality. Cereal Food World 40: 437-438 (1995)
161 Vandeputte GE, Vermeylen R, Geeroms J, Delcour JA. Rice starches. III. Structural aspects provide insight in amylopectin retrogradation properties and gel texture. J. Cereal Sci. 38: 61-68 (2003)   DOI   ScienceOn
162 Lee S-W, Han S-H, Rhee C. Effects of various salts and emulsifiers on retrogradation rate of rice starch gel. Food Sci. Biotechnol. 11: 48-54 (2002)
163 Fox JD, Robyt JF. Modification of starch granules by hydrolysis with hydrochloric acid in various alcohols, and the formation of new kinds of limit dextrins. Carbohyd. Res. 227: 163-170 (1992)   DOI   ScienceOn