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Abstract
In order to understand the protein functions that are re-
lated to disease, it is important to detect the correlation 
between amino acid mutations and disease. Many mu-
tation studies about disease-related proteins have been 
carried out through molecular biology techniques, such 
as vector design, protein engineering, and protein cry-
stallization. However, experimental protein mutation 
studies are time-consuming, be it in vivo or in vitro. We 
therefore performed a bioinformatic analysis of known 
disease-related mutations and their protein structure 
changes in order to analyze the correlation between mu-
tation and disease. For this study, we selected 111 dis-
eases that were related to 175 proteins from the PDB 
database and 710 mutations that were found in the pro-
tein structures. The mutations were acquired from the 
Human Gene Mutation Database (HGMD). We selected 
point mutations, excluding only insertions or deletions, 
for detecting structural changes. To detect a structural 
change by mutation, we analyzed not only the structural 
properties (distance of pocket and mutation, pocket 
size, surface size, and stability), but also the phys-
ico-chemical properties (weight, instability, isoelectric 
point (IEP), and GRAVY score) for the 710 mutations. 
We detected that the distance between the pocket and 
disease-related mutation lay within 20 Å (98.5%, 700 
proteins). We found that there was no significant corre-
lation between structural stability and disease-causing 
mutations or between hydrophobicity changes and crit-
ical mutations. For large-scale mutational analysis of 
disease-causing mutations, our bioinformatics approach, 
using 710 structural mutations, called “Structural 
Mutatomics,” can help researchers to detect dis-
ease-specific mutations and to understand the biological 
functions of disease-related proteins. 
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Introduction
Genetic mutations have effects on disease because they 
alter the function or structure of essential proteins. 
Protein structure changes by mutation are especially im-
portant for understanding the mechanism of diseases 
that are caused by mutation. Therefore, many mutation 
studies about disease-related proteins have been con-
ducted using molecular biology techniques in various 
species. For example, in superoxide dismutase, a known 
antioxidant, the effect of the L175 mutation causes a 
decrease in activity, because L175 changes the struc-
tural stabilization of the active site (Gabbianelli et al., 
1997). Also, in cytochrome P450, known as an im-
portant oxidase for drug metabolism, the L358P mutant 
shows facilitation of electron transfer from the electron 
donor and acts as a trigger for electron transfer to oxy-
genated P450. Mutated cytochrome P450 changes from 
an oxidase to a reductase and causes a loss of function 
of the oxidase (Tosha et al., 2004). Recently, the 
I47A/I54V protease mutant in complex with Lopinavir 
showed that mutation affects the strain of the bound in-
hibitor in the protease-binding cleft (Grantz Saskova et 
al., 2008). In previous studies, the mutation of specific 
sites has been shown to have an effect on the function 
and structure of proteins that cause disease. It is well 
known that there is a correlation between mutated pro-
teins and disease. Also, there are bioinformatic tools to 
predict the correlation between mutation and disease, 
such as SIFT (Steven Henikoff et al., 2003) and 
PolyPhen (Vasily Ramensky et al., 2002). However, 
these tools are based only on sequence homology. 
  In this study, we conducted a large-scale structural 
and sequence mutational analysis of amino acids that 
could have a direct effect on protein function. Because 
we collected the largest number of 3D structural 
changes in proteins, such as pockets, we named the 
dataset the “structural mutatome.” The number of such 
structural mutations will increase continuously, and 
mapping the mutations to function and to disease will 
play a critical role in understanding the precise disease 
mechanisms that are caused by 3D mutations. We clas-
sified mutated proteins by their structural properties 
(distance of pocket residue and mutation, pocket size, 
surface size, and stability) and physico-chemical proper-
ties (weight, instability, isoelectric point, and GRAVY 
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Fig. 1. The flowchart for structural analysis. (A) In order to 

detect correlations between structure and disease-related 

mutations, we performed sequential procedures, including 

conversion of genes to proteins, PSI-Blast, protein structure 

modeling, physico-chemical analysis, and structural analysis. 

(B) Scores and Analysis Procedures.

Table 1. The number of genes or proteins and mutations

Name HGMD Gene2accession Modeller

The number of genes 2,899 782 175

 or proteins

Point mutation 43,039 5,515 710

The final numbers used for the analysis are shown in the 

last column, under MODELLER program.

score). We analyzed the biological meaning of the mu-
tated proteins that were associated with diseases using 
bioinformatics tools such as Biopython (Chapman et al., 
2000), Ligsite (Hendlich et al., 1997), NACCESS (Hub-
bard et al., 1993), and I-mutant (Capriotti et al., 2004). 
The overall approach of our study was to map as many 
structural mutations as possible and find general pat-
terns to analyze 3D mutations with regard to protein 
function using as many bioinformatic analysis methods 
as possible. The overall strategy was termed “Structural 
Mutatomics,” because it is intended to find interactions 
between mutations, structural changes, physico-chem-
ical aberrations, and disease states that are found in the 

literature and in databases.

Methods
We constructed a computational pipeline (structural mu-
tatomics pipeline) for structural analysis of mutations 
that were associated with diseases. Our analysis sche-
ma is briefly described in Fig. 1A.

Extraction of mutation information 

The Human Gene Mutation Database (HGMD) is a col-
lated database for known (published) gene lesions that 
are responsible for human inherited diseases. HGMD 
currently includes information on the nature, location, 
and sequence context of lesions in human nuclear 
genes (http://www.hgmd.org; Stensonet et al., 2003). We 
collected information, including disease, gene symbol, 
gene name, nucleotide base, codon, OMIM ID, and 
cDNA accession number from HGMD professional ver-
sion 2008.1. We retrieved 2899 genes and 43,039 muta-
tions (Table 1), and we stored the information in a local 
MySQL database (http://www.mysql.com).

Gene-to-protein conversion

In order to map mutations in proteins, we converted the 
mutated genes into reference proteins. The human pro-
tein sequences were retrieved from gene2accession 
(ftp://ftp.ncbi.nih.gov/gene/) and NCBI (ftp://ftp.ncbi.nih. 
gov/pub/nrdb/), which have comprehensive, nonredun-
dant, and well-annotated sets. We matched 782 pro-
teins and 5515 mutations from genes in HGMD (Table 
1). The match was parsed with a locally developed Perl 
program (http://www.perl.org).

Protein structure prediction

Proteins with mutations do not always have 3D struc-
tures that are solved and deposited in PDB (http://www. 
rcsb.org/pdb/). Therefore, it is necessary to construct 3D 
models for many genes. Once we obtain 3D models for 
any gene, we can look at the location of the mutation 
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Fig. 2. Two-dimensional analysis of distance. X-axis is mu-

tated protein count. Y-axis is Score of distance. Except for 

cardiomyopathy proteins, most protein mutations are close 

to pockets.

in 3D. This is a simple way of detecting what kind of 
adverse effects that a mutation can have on a protein. 
For effective structure modeling, 710 human proteins 
were aligned with proteins that had structures in PDB 
using the PSI-BLAST (www.ncbi.nlm.nih.gov/BLAST/) al-
gorithm with a cutoff of 30% sequence identity, 70% 
sequence length coverage, PSI-BLAST iteration 5, and a 
common expect value (E-value) of 0.0001. If the query 
protein had 100% sequence identity with any PDB tem-
plate, the protein was used directly without homology 
modeling (52 proteins). For 123 proteins, we predicted 
the 3D structures of the proteins using MODELLER9v4 
by the Homology Modeling methodology (John et al., 
2003). The MODELLER program automatically con-
structs an all-atom 3D model using one or more align-
ments between the query sequence(s) and known ho-
mologous structures. We were able to retrieve 175 pro-
teins with mutations out of 710 because not all 782 pro-
teins had homologous structures (Table 1).

Structural analysis 

To analyze the correlation between structure and muta-
tion, we calculated the distances between structural 
pockets on proteins and mutation sites, the change of 
pocket size due to mutation, the change of protein sur-
face size caused by mutation, and the change of stabil-
ity affected by mutation. Pockets in proteins are usually 
critical for their work. Therefore, any nearby mutated 
pockets can have deleterious effects, causing disease. 
The distance between a pocket and a mutation was de-
tected as the average RMSD (root mean square dis-
tance) of the distances between all residues that partici-
pated in a pocket and a mutation residue. To find 
changes in pocket size, protein surface, and protein sta-
bility, we used Ligsite (Hendlich et al., 1997) which cal-
culates the size of pocket means potential ligand-bind-
ing site by the PSP (protein-solvent-protein) method, 
NACCESS (Hubbard et al., 1993) which calculates the 
atomic accessible area when a probe is rolled around 
the Van der Waals surface of a macromolecule and 
I-mutant (Capriotti et al., 2004) which calculates the free 
energy change of protein stability using a support vector 
machine. The overall difference between a mutated gene 
and its wild-type version was measured by Score, cal-
culated as “Wild-type Score - Mutation Score” 
(Supplemental Table 1, http://www.kogo.or.kr).

Physico-chemical analysis 

The physico-chemical properties of mutated proteins are 
important in order to understand biological functions. 
We used modules from Biopython (http://biopython.org) 

(Chapman et al., 2000) to calculate molecular weight, 
isoelectric point (IEP), protein instability (half life), and 
GRAVY score (the average hydropathy score for all ami-
no acids) (Park et al., 2008). Also, we calculated the 
Score-the difference in physico-chemical properties be-
tween the wild-type and mutation sequences (Supple-
mental Table 2, http://www.kogo.or.kr).

Results
To get an intuitive view of each Score, we made a 
two-dimensional scale plot, assigning the X-axis as mu-
tated protein count and the Y-axis as structural proper-
ties or physico-chemical properties (Fig. 1B). The two 
scores were defined as “Wild-type physico-chemical 
property scores?Mutated physico-chemical property 
scores” and “Wild-type protein structural property 
scores-Mutated protein structural property scores.”

The physical distance between protein pockets 
and mutated residues

To detect which specific mutation patterns were asso-
ciated with diseases, we retrieved distance scores for 
the structural phenotypes on two-dimensional scale 
plots (Fig. 2). Surprisingly, 43% of mutations occurred 
on residues that were components of pockets. Also, in 
most cases, the distance was less than 20 Å (confidence 
98.5%). This means that the mutated residues were very 
close to the protein pockets. The mutations that oc-
curred in the pockets of each size in structural models 
affected the binding and formation of complexes by the 
mutated proteins. An outlier of this pattern was found 
for Dilated Cardiomyopathy, a condition in which the 
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Fig. 4. Two-dimensional analysis 

of instability. X-axis is mutation 

protein count. Y-axis is Mutation 

Score of instability. Most proteins 

showed relatively small differences 

before and after mutation in terms 

of stability.

Fig. 5. The change in pocket size 

by point mutation. A is the 3D 

structure of a wild-type protein. B 

is the 3D structure of the A448T 

mutant. The red surface is a point

mutation, and the yellow surface 

is a pocket site. The pocket size 

changed from 1365 Å3 to 1829 Å3

by mutation. The A448T mutation 

in the NP_000762 protein causes 

impaired diclofenac metabolism. 

Fig. 3. Two-dimensional analysis of pocket size. X-axis is 

mutation protein count. Y-axis is score of pocket size. 

Y-axis shows the pocket size change after mutation, calcu-

lated using 3D models.

heart becomes weakened and enlarged, wherein dis-
tance had nothing to do with the mutation. We found 
that the Dilated Cardiomyopathy protein was very large, 
and the mutation location was far from the pockets of 
each size. Most mutations that were found close to the 
pockets were relatively small in size. 

The difference in pocket size between wild-type 
and mutated proteins

We calculated the largest pocket size score in a struc-
tural phenotype and two-dimensional scale plot (Fig. 3). 
A mutated protein that is associated with disease usu-
ally has an effect on pocket size. The mechanism of 
protein-protein docking also is affected according to 
pocket size. In Fig. 3, circled in red, there were pocket 
sizes that were larger than 2000 Å3. This indicates that 
a single point mutation that is associated with a disease 
can be a significant factor in protein structure. For ex-
ample, the A428T mutation in Impaired Diclofenac 
Metabolism (NP_000762.2) caused that pocket size to 
change from 1365 Å3 to 1829 Å3, because the mutation 
created a new hole in the pocket (Fig. 5).

The difference in protein instability index be-
tween wild-type and mutated proteins

We also calculated the instability Score for phys-
ico-chemical properties in a two-dimensional scale plot 
(Fig. 4). A mutation site that is associated with disease 
produces a molecular weight difference in most 
proteins. Proteins were degraded rapidly above an in-
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stability index of 40. Fig. 4 shows the instability Score. 
The mutated protein was usually unstable, as seen by 
an increase in the instability Score. In Fig. 4, the pattern 
of instability showed values between 2 and -2. 

Discussion
For most proteins, the distance between mutated resi-
dues and protein surface pockets was less than 20 Å 
(confidence 98.5%). This means that pockets often are 
affected by mutations that are associated with diseases. 
Mutated residues that are close to pockets can change 
the binding of proteins to other proteins and the for-
mation of complexes. The pocket size also was affected 
by mutation in our two-dimensional scale analysis of 
structural property. If a ligand can not interlock with its 
target protein, it can lead to the failure of protein-protein 
docking. On the contrary, there was no significant 
change in stability between the wild-type and mutated 
proteins in many cases. Our large-scale survey of 3D 
mutations in the PDB and our models to analyze the ef-
fects of mutation on pockets, pocket size, and stability 
showed that bioinformatic analysis can predict the un-
certain effects of mutations on proteins in vivo and in 
vitro. This will help researchers to detect more specific 
mutations and to understand the biological functions of 
disease-related proteins.
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