• Title/Summary/Keyword: mixed problem

Search Result 1,311, Processing Time 0.024 seconds

Analysis of structured singular value with mixed sensitivity problem in robust performance (혼합된 감도함수를 이용한 구조적 특이치의 견실성능문제 분석)

  • 방경호;엄태호;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.482-485
    • /
    • 1993
  • This paper deals with structured singular value and mixed sensitivity problem for robust performance. We derive the sufficient condition that mixed sensitivity problem satisfies structured singular value in robust performance problem. And we show the bound of perturbation between structured singular value and norm of mixed sensitivity functions.

  • PDF

COMMON SOLUTION TO GENERALIZED MIXED EQUILIBRIUM PROBLEM AND FIXED POINT PROBLEM FOR A NONEXPANSIVE SEMIGROUP IN HILBERT SPACE

  • DJAFARI-ROUHANI, BEHZAD;FARID, MOHAMMAD;KAZMI, KALEEM RAZA
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.89-114
    • /
    • 2016
  • In this paper, we introduce and study an explicit hybrid relaxed extragradient iterative method to approximate a common solution to generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup in Hilbert space. Further, we prove that the sequence generated by the proposed iterative scheme converges strongly to the common solution to generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup. This common solution is the unique solution of a variational inequality problem and is the optimality condition for a minimization problem. The results presented in this paper are the supplement, improvement and generalization of the previously known results in this area.

A NEW ALGORITHM FOR SOLVING MIXED EQUILIBRIUM PROBLEM AND FINDING COMMON FIXED POINTS OF BREGMAN STRONGLY NONEXPANSIVE MAPPINGS

  • Biranvand, Nader;Darvish, Vahid
    • Korean Journal of Mathematics
    • /
    • v.26 no.4
    • /
    • pp.777-798
    • /
    • 2018
  • In this paper, we study a new iterative method for solving mixed equilibrium problem and a common fixed point of a finite family of Bregman strongly nonexpansive mappings in the framework of reflexive real Banach spaces. Moreover, we prove a strong convergence theorem for finding common fixed points which also are solutions of a mixed equilibrium problem.

THE RIEMANN PROBLEM FOR A SYSTEM OF CONSERVATION LAWS OF MIXED TYPE (II)

  • Lee, Choon-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.37-59
    • /
    • 1998
  • We prove that solutions $u^\epsilon$ for the mixed hyperbolic-elliptic system of conservation laws with the viscosity term are total variation bounded uniformly in $\epsilon$ and that the solution $u^\epsilon$ converges to the solution for the mixed hyperbolic-elliptic Riemann problem as $\epsilon \to 0$.

  • PDF

MIXED FINITE ELEMENT APPROXIMATION OF A STEFAN PROBLEM

  • Shin, Jun-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.357-364
    • /
    • 2003
  • A fully discrete $H^1-mixed$ finite element approximation for the single-phase Stefan problem is introduced and the unique existence of the approximation is established. And some numerical experiments are given.

POSTPROCESSING FOR THE RAVIART-THOMAS MIXED FINITE ELEMENT APPROXIMATION OF THE EIGENVALUE PROBLEM

  • Kim, Kwang-Yeon
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.467-481
    • /
    • 2018
  • In this paper we present a postprocessing scheme for the Raviart-Thomas mixed finite element approximation of the second order elliptic eigenvalue problem. This scheme is carried out by solving a primal source problem on a higher order space, and thereby can improve the convergence rate of the eigenfunction and eigenvalue approximations. It is also used to compute a posteriori error estimates which are asymptotically exact for the $L^2$ errors of the eigenfunctions. Some numerical results are provided to confirm the theoretical results.

TWO STEP ALGORITHM FOR SOLVING REGULARIZED GENERALIZED MIXED VARIATIONAL INEQUALITY PROBLEM

  • Kazmi, Kaleem Raza;Khan, Faizan Ahmad;Shahza, Mohammad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.675-685
    • /
    • 2010
  • In this paper, we consider a new class of regularized (nonconvex) generalized mixed variational inequality problems in real Hilbert space. We give the concepts of partially relaxed strongly mixed monotone and partially relaxed strongly $\theta$-pseudomonotone mappings, which are extension of the concepts given by Xia and Ding [19], Noor [13] and Kazmi et al. [9]. Further we use the auxiliary principle technique to suggest a two-step iterative algorithm for solving regularized (nonconvex) generalized mixed variational inequality problem. We prove that the convergence of the iterative algorithm requires only the continuity, partially relaxed strongly mixed monotonicity and partially relaxed strongly $\theta$-pseudomonotonicity. The theorems presented in this paper represent improvement and generalization of the previously known results for solving equilibrium problems and variational inequality problems involving the nonconvex (convex) sets, see for example Noor [13], Pang et al. [14], and Xia and Ding [19].

On the Reconstruction of Pinwise Flux Distribution Using Several Types of Boundary Conditions

  • Park, C. J.;Kim, Y. H.;N. Z. Cho
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.311-319
    • /
    • 1996
  • We reconstruct the assembly pinwise flux using several types of boundary conditions and confirm that the reconstructed fluxes are the same with the reference flux if the boundary condition is exact. We test EPRI-9R benchmark problem with four boundary conditions, such as Dirichlet boundary condition, Neumann boundary condition, homogeneous mixed boundary condition (albedo type), and inhomogeneous mixed boundary condition. We also test reconstruction of the pinwise flux from nodal values, specifically from the AFEN [1, 2] results. From the nodal flux distribution we obtain surface flux and surface current distributions, which can be used to construct various types of boundary conditions. The result show that the Neumann boundary condition cannot be used for iterative schemes because of its ill-conditioning problem and that the other three boundary conditions give similar accuracy. The Dirichlet boundary condition requires the shortest computing time. The inhomogeneous mixed boundary condition requires only slightly longer computing time than the Dirichlet boundary condition, so that it could also be an alternative. In contrast to the fixed-source type problem resulting from the Dirichlet, Neumann, inhomogeneous mixed boundary conditions, the homogeneous mixed boundary condition constitutes an eigenvalue problem and requires longest computing time among the three (Dirichlet, inhomogeneous mixed, homogeneous mixed) boundary condition problems.

  • PDF

MIXED VECTOR FQ-IMPLICIT VARIATIONAL INEQUALITY WITH LOCAL NON-POSITIVITY

  • Lee, Byung-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.425-432
    • /
    • 2009
  • This paper introduces a local non-positivity of two set-valued mappings (F,Q) and considers the existences and properties of solutions for set-valued mixed vector FQ-implicit variational inequality problems and set-valued mixed vector FQ-complementarity problems in the neighborhood of a point belonging to an underlined domain K of the set-valued mappings, where the neighborhood is contained in K. This paper generalizes and extends many results in [1, 3-7].

MIXED VECTOR FQ-IMPLICIT VARIATIONAL INEQUALITIES WITH FQ-COMPLEMENTARITY PROBLEMS

  • Lee, Byung-Soo
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.247-258
    • /
    • 2009
  • This paper introduces new mixed vector FQ-implicit variational inequality problems and corresponding mixed vector FQ-implicit complementarity problems for set-valued mappings, and studies the equivalence between them under certain assumptions in Banach spaces. It also derives some new existence theorems of solutions for them with examples under suitable assumptions without monotonicity. This paper generalizes and extends many results in [8, 10, 19-22].