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MIXED VECTOR FQ-IMPLICIT VARIATIONAL
INEQUALITY WITH LOCAL NON-POSITIVITY

Byung-Soo Lee

Abstract. This paper introduces a local non-positivity of two set-valued
mappings (F, Q) and considers the existences and properties of solutions
for set-valued mixed vector FQ-implicit variational inequality problems
and set-valued mixed vector FQ-complementarity problems in the neigh-
borhood of a point belonging to an underlined domain K of the set-valued
mappings, where the neighborhood is contained in K.

This paper generalizes and extends many results in [1, 3-7].

1. Introduction

F -complementarity problem (F-CP); finding x ∈ K such that

〈Tx, x〉+ F (x) = 0 and 〈Tx, y〉+ F (y) ≥ 0 for all y ∈ K,

and corresponding variational inequality problem;
finding x ∈ K such that

〈Tx, y − x〉+ F (y)− F (x) ≥ 0 for all y ∈ K,

where K is a nonempty closed and convex cone of a real Banach space X with
its dual X∗, T : K → X? is a mapping and F : K → (−∞, +∞) is a positively
homogeneous and convex function, were firstly considered in [7].

In 2003, Fang and Huang [1] considered a vector F -complementarity prob-
lem with demi-pseudomonotone mappings in Banach spaces by considering the
solvability of the problems. Huang and Li [3] studied a scalar F -implicit vari-
ational inequality problem and another F -implicit complementarity problem
in Banach spaces in 2004. Recently, the result of the scalar case in [3] was
extended and generalized to the vector case by Li and Huang [6] . The equiv-
alence between the F -implicit variational inequality problem and F -implicit
complementarity problem was presented and some new existence theorems of
solutions for F -implicit variational inequality problems were also proved.
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In 2007, Lee, Khan, and Salahuddin [5] generalized some results of [3, 6] to
more generalized vector case. They introduced a generalized vector F -implicit
complementarity problem and corresponding generalized vector F -implicit vari-
ational inequality problem in Banach spaces and proved the equivalence be-
tween them under certain assumptions. Furthermore, they derived some new
existence theorems of solutions for the generalized vector F -implicit comple-
mentarity problems and the generalized vector F -implicit variational inequality
problems under some suitable assumptions without any monotonicity.

Recently, the following mixed vector FQ-implicit variational inequality prob-
lem (FQ-VI) and corresponding mixed vector FQ-implicit complementarity
problems (FQ-CP) for set-valued mappings were considered in [4];

(FQ-VI); find x ∈ K such that p− s + w− z ∈ P (x) for any p ∈ Q(x, g(y)),
s ∈ Q(x, h(x)), w ∈ F (g(y)), and z ∈ F (h(x)), where y ∈ K.

(FQ-CP); find x ∈ K such that
(a) p + w ∈ P (x) for any p ∈ Q(x, g(y)) and w ∈ F (g(y)), where y ∈ K,

and
(b) s + z = 0 for any s ∈ Q(x, h(x)) and z ∈ F (h(x)), where K is a

nonempty closed convex cone of a real Banach space X and {P (x) :
x ∈ K} is a family of nonempty pointed closed convex cones with the
apex at the origin in a real Banach space Y . Mappings g, h : K → K
are single-valued, F : K → 2Y and Q : K ×K → 2Y are set-valued.

The following Theorem A and Theorem B in [4] show the equivalence between
(FQ-VI) and (FQ-CP) and some existence theorems of solutions for them under
some suitable assumptions without monotonicity, respectively.

Theorem A. Assume that a set-valued mapping F : K → 2Y is positively
homogeneous, a set-valued mapping Q : K ×K → 2Y is also positively homo-
geneous in the second argument and g : K → K is surjective. Then (FQ-VI)
is equivalent to (FQ-CP).

Theorem B. Let K be a nonempty closed convex subset of X and P : K → 2Y

be upper semicontinuous on K. Assume that
(a) g, h : K → K are continuous, F : K → 2Y is lower semicontinuous

and Q : K ×K → 2Y is lower semicontinuous in two arguments,
(b) there exists a single-valued mapping T : K ×K → Y satisfying

(b1) for x ∈ K, T (x, x) ∈ P (x),
(b2) for x, y ∈ K,

a− b + c− d− T (x, y) ∈ P (x)

for any a ∈ Q(x, g(y)), b ∈ Q(x, h(x)), c ∈ F (g(y)) and d ∈
F (h(x)),

(b3) for x ∈ K the set {y ∈ K : T (x, y) 6∈ P (x)} is convex,
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(c) there exists a nonempty compact convex subset D of K such that for
all x ∈ K \D there exists a y ∈ D satisfying a− b + c− d 6∈ P (x) for
some a ∈ Q(x, g(y)), b ∈ Q(x, h(x)), c ∈ F (g(y)) and d ∈ F (h(x)).

Then (FQ-VI) has a solution. Furthermore, the solution set of (FQ-VI) is
closed.

This paper introduces a local non-positivity of set-valued mappings (F, Q)
and considers the existences and properties of solutions for (FQ-VI) and (FQ-
CP) in the neighborhood of a point belonging to an underlined domain K of
the set-valued mappings, where the neighborhood is contained in K.

This paper generalizes and extends many results in [1, 3-7].

2. Preliminaries

Remark that P (x), x ∈ K is a closed set such that
(i) λP (x) ⊂ P (x), λ > 0, x ∈ K,
(ii) P (x) + P (x) ⊂ P (x), x ∈ K,
(iii) P (x) ∩ (−P (x)) = {0}, x ∈ K.

An ordered Banach space (Y, P (x)) is a real Banach space with an ordering
defined by a closed cone P (x) ⊂ Y as for any y, z ∈ Y ,

y ≥ z if and only if y − z ∈ P (x),

y 6≥ z if and only if y − z 6∈ P (x).

Remark that
z ≤ 0 if and only if z ∈ −P (x),

z 6≤ 0 if and only if z 6∈ −P (x),

z ≥ 0 if and only if z ∈ P (x),

z 6≥ 0 if and only if z 6∈ P (x).

Lemma 2.1 ([1]). Let (Y, P ) be an ordered Banach space induced by a pointed
closed cone P . Then x + y ∈ P for x, y ∈ P .

Definition 2.1 ([4]). Let X, Y be two vector spaces and K be a cone of X.
A set-valued mapping F : K → 2Y is said to be positively homogeneous if
F (αx) = αF (x) for all x ∈ K and α ≥ 0. F is said to be linear if F (αx+βy) =
αF (x) + βF (y) for x, y ∈ K, α + β = 1, α, β ≥ 0.

Definition 2.2. A set-valued mapping W : K ⊂ X → 2Y is upper semicontin-
uous at x0 ∈ K if every open set V containing W (x0) there exists an open set
U containing x0 such that W (U) ⊂ V . W is lower semicontinuous at x0 ∈ K if
for every open set V intersecting W (x0) there exists an open set U containing
x0 such that W (x)∩V 6= ∅ for every x ∈ U . W is upper semicontinuous (lower
semicontinuous) on K if it is upper semicontinuous (lower semicontinuous) at
every point of K. W is continuous on K if it is both upper semicontinuous and
lower semicontinuous on K.
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Lemma 2.2. Let W : X → 2Y be a set-valued mapping and x0 ∈ X.
(i) W is upper semicontinuous at x0 if and only if for any net {xα} ⊂ X

with xα → x0 and for any net {yα} in Y with yα ∈ W (xα) such that
yα → y0 in Y , we have y0 ∈ W (x0).

(ii) W is lower semicontinuous at x0 if and only if for any net {xα} ⊂ X
with xα → x0, and for any y0 ∈ W (x0), there exists a net {yα} such
that yα ∈ W (xα) and yα → y0.

Lemma 2.3 ([2]). Let W : X → 2Y be a set-valued mapping. If for any x ∈ X,
W (x) is compact, then W is upper semicontinuous at x0 if and only if for any
net {xα} ⊂ X such that xα → x0 and for every yα ∈ W (xα), there exists
y0 ∈ W (x0) and a subnet {yαβ

} of {yα} such that yαβ
→ y0.

3. Main results

Unless otherwise specified, we assume that K is a nonempty closed convex
cone of a real Banach space X and {P (x) : x ∈ K} is a family of nonempty
pointed closed convex cones with the apex at the origin in a real Banach space
Y .

Definition 3.1. Let g, h : K → K be single-valued mappings and F : K → 2Y ,
Q : K × K → 2Y set-valued mappings. Let P : K → 2Y be a set-valued
mapping with nonempty pointed closed convex cones with the apex at the
origin in Y . (F,Q) is said to be locally non-positive at x0 ∈ K with respect to
(g, h) if there exist a neighborhood N(x0) of x0 and z0 ∈ K ∩ IntN(x0) such
that a− b+c−d ∈ −P (x) for any a ∈ Q(x, g(z0)), b ∈ Q(x, h(x)), c ∈ F (g(z0))
and d ∈ F (h(x)) for x ∈ K ∩ ∂N(x0), the boundary of N(x0).

Example 3.1. Let X = Y = R, K = [0,∞) and P (x) = [0,∞) for all
x ∈ K. Define mappings g, h : K → K by g(x) = 2x and h(x) = 2x,
set-valued mappings F : K → 2R by F (x) =

[
1
2x, x

]
, Q : K × K → 2R by

Q(x, y) =
[
2
3 (x + y), x + y

]
, then (F, Q) is locally non-positive at x0 = 0 ∈ K

with respect to (g, h). If we take a neighborhood N(0) =
(− 1

2 , 1
2

)
of x0 = 0

and z0 = 1
4 ∈ K ∩ IntN(0) =

[
0, 1

2

)
, then for the unique element x = 1

2

of K ∩ ∂N(0) =
{

1
2

}
, we have for any a ∈ Q

(
1
2 , g

(
1
4

))
, b ∈ Q

(
1
2 , h

(
1
2

))
,

c ∈ F
(
g

(
1
4

))
and d ∈ F

(
h

(
1
2

))
,

a− b + c− d ∈ −K.

In fact, Q
(

1
2 , g

(
1
4

))
= Q

(
1
2 , 1

2

)
=

[
2
3 , 1

]
, Q

(
1
2 , h

(
1
2

))
= Q

(
1
2 , 1

)
=

[
1, 3

2

]
,

F
(
g

(
1
4

))
= F

(
1
2

)
=

[
1
4 , 1

2

]
, F

(
h

(
1
2

))
= F (1) =

[
1
2 , 1

]
, thus

1− 1 +
1
2
− 1

2
= 0 ∈ −K.

Theorem 3.1. Let K be a nonempty closed and convex subset of X. Let
P : K → 2Y be a set-valued mapping with nonempty pointed closed convex
cones with the apex at the origin in Y . Assume that
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(a) single-valued mappings g, h : K → K are continuous and set-valued
mappings F : K → 2Y , Q : K × K → 2Y are continuous and P is
upper semicontinuous,

(b) a single-valued mapping T : K ×K → Y satisfies
(b1) for x ∈ K, T (x, x) ∈ P (x),
(b2) for x, y ∈ K,

a− b + c− d− T (x, y) ∈ P (x)

for any a ∈ Q(x, g(y)), b ∈ Q(x, h(x)), c ∈ F (g(y)) and d ∈
F (h(x)),

(b3) for x ∈ K the set {y ∈ K : T (x, y) 6∈ P (x)} is convex,
(c) (F, Q) is locally non-positive at x0 ∈ K with respect to (g, h) and there

exists a nonempty compact convex subset D of K ∩N(x0) such that for
all x ∈ (K ∩N(x0)) \D there exists y ∈ D satisfying

a− b + c− d 6∈ P (x)

for any a ∈ Q(x, g(y)), b ∈ Q(x, h(x)), c ∈ F (g(y)) and d ∈ F (h(x)),

(d) g, h and F are linear and Q is linear in the second argument.
Then (FQ-VI) has a solution in the neighborhood of x0, that is, there exists
x∗ ∈ K ∩N(x0) such that, for y ∈ K

a∗ − b∗ + c− d∗ ∈ P (x∗)

for any a∗ ∈ Q(x∗, g(y)), b∗ ∈ Q(x∗, h(x∗)), c ∈ F (g(y)) and d∗ ∈ F (h(x∗)).

Proof. Since (F, Q) is locally non-positive at x0 ∈ K with respect to (g, h), we
can assume that N(x0) is a closed and convex set without loss of generality.
Since K ∩ N(x0) is also closed and convex, from Theorem B, (FQ-VI) has a
solution x∗ ∈ K ∩N(x0) such that, for y ∈ K ∩N(x0)

(3.1) a∗ − b∗ + c− d∗ ∈ P (x∗)

for any a∗ ∈ Q(x∗, g(y)), b∗ ∈ Q(x∗, h(x∗)), c ∈ F (g(y)) and d∗ ∈ F (h(x∗)).
Now we show that for y ∈ K, (3.1) also holds.
(i) If x∗ ∈ K ∩ IntN(x0), then N(x0)\{x∗} is a neighborhood of the origin

and so it is absorbing. For any y ∈ K, there exists t ∈ (0, 1) such that t(y−x∗) ∈
N(x0)\{x∗} and so yt := ty + (1− t)x∗ ∈ K ∩N(x0). Hence

(3.2) a∗t − b∗ + ct − d∗ ∈ P (x∗)

for any a∗t ∈ Q(x∗, g(yt)), b∗ ∈ Q(x∗, h(x∗)), ct ∈ F (g(yt)) and d∗ ∈ F (h(x∗)).
On the other hand, the following set

A = {y ∈ K : a− b + c− d ∈ P (x) for any a ∈ Q(x, g(y)), b ∈ Q(x, h(x))

c ∈ F (g(y)) and d ∈ F (h(x))},
is convex for all x ∈ K. In fact, if y1, y2 ∈ A, then for x ∈ K,

a1 − b + c1 − d ∈ P (x)
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for any a1 ∈ Q(x, g(y1)), b ∈ Q(x, h(x)), c1 ∈ F (g(y1)) and d ∈ F (h(x)) and

a2 − b + c2 − d ∈ P (x)

for any a2 ∈ Q(x, g(y2)), b ∈ Q(x, h(x)), c2 ∈ F (g(y2)) and d ∈ F (h(x)).
Hence for t ∈ (0, 1), from the condition (d), we have, for x ∈ K

ta1 + (1− t)a2 − b + tc1 + (1− t)c2 − d ∈ P (x)

for any ta1 + (1− t)a2 ∈ tQ(x, g(y1)) + (1− t)Q(x, g(y2))

= Q(x, g(ty1 + (1− t)y2)),

b ∈ Q(x, h(x)),

tc1 + (1− t)c2 ∈ tF (g(y1)) + (1− t)F (g(y2))

= F (g(ty1 + (1− t)y2)), and

d ∈ F (h(x)).

Hence ty1 + (1 − t)y2 ∈ A, which shows that A is convex. Thus by the conti-
nuities of g, h, F and Q from (3.2) we have for y ∈ K

a∗ − b∗ + c− d∗ ∈ P (x∗)

for any a∗ ∈ Q(x∗, g(y)), b∗ ∈ Q(x∗, h(x∗)), c ∈ F (g(y)) and d∗ ∈ F (h(x∗)).
(ii) Since (F, Q) is locally non-positive at x0 ∈ K with respect to (g, h), for

x∗ ∈ K ∩ ∂N(x0) there exists z0 ∈ K ∩ IntN(x0) such that

(3.3) a0 − b∗ + c0 − d∗ ∈ −P (x∗)

for any a0 ∈ Q(x∗, g(z0)), b∗ ∈ Q(x∗, h(x∗)), c0 ∈ F (g(z0)) and d∗ ∈ F (h(x∗)).
By a similar method, for any y ∈ K, there exists a t ∈ (0, 1) such that

t(y − z0) ∈ N(x0)\{z0}, so zt := ty + (1− t)z0 ∈ K ∩N(x0). Hence it follows
from (3.1)

(3.4) at − b∗ + ct − d∗ ∈ P (x∗)

for any at ∈ Q(x∗, g(zt)), b∗ ∈ Q(x∗, h(x∗)), ct ∈ F (g(zt)) and d∗ ∈ F (h(x∗)).
Letting t → 0 in (3.4), we obtain

(3.5) a0 − b∗ + c0 − d∗ ∈ P (x∗)

for any a0 ∈ Q(x∗, g(z0)), b∗ ∈ Q(x∗, h(x∗)), c0 ∈ F (g(z0)) and d∗ ∈ F (h(x∗)).
Thus by (3.3) and (3.5),

(3.6) a0 − b∗ + c0 − d∗ = 0

for any a0 ∈ Q(x∗, g(z0)), b∗ ∈ Q(x∗, h(x∗)), c0 ∈ F (g(z0)) and d∗ ∈ F (h(x∗)).
Thus by (3.4) and (3.6), we have

(3.7) ta∗t + (1− t)b∗ − a0 + tct + (1− t)d∗ − c0 ∈ P (x∗)

for any a∗t ∈ Q(x∗, g(zt)), b∗ ∈ Q(x∗, h(x∗)), a0 ∈ Q(x∗, g(z0)), ct ∈ F (g(zt)),
d∗ ∈ F (h(x∗)) and c0 ∈ F (g(z0)).

Hence by (3.6) and (3.7)

(3.8) a∗t − b∗ + ct − d∗ ∈ P (x∗)
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for any a∗t ∈ Q(x∗, g(zt)), b∗ ∈ Q(x∗, h(x∗)), ct ∈ F (g(zt)), and d∗ ∈ F (h(x∗)).
Letting t → 1 in (3.8), by the condition (d) we have

a∗ − b∗ + c− d∗ ∈ P (x∗)

for any a∗ ∈ Q(x∗, g(y)), b∗ ∈ Q(x∗, h(x∗)), c ∈ F (g(y)) and d∗ ∈ F (h(x∗)).
Hence by (i) and (ii), the proof is completed. ¤

Letting D = K in the condition (c) of Theorem 3.1, we have the following
result as a corollary.

Theorem 3.2. Let K be a nonempty compact and convex subset of a real
Banach space X, and assume that the condition (a), (b) and (d) of Theorem 3.1
hold with the following condition (c)′ instead of (c) of Theorem 3.1;

(c)′ the mappings (F,Q) is locally non-positive at x0 ∈ K with respect to
(g, h).

Then (FQ-VI) has a solution in the neighborhood of x0, that is, there exists
x∗ ∈ K ∩N(x0) such that, for y ∈ K

a∗ − b∗ + c− d∗ ∈ P (x∗)

for any a∗ ∈ Q(x∗, g(y)), b∗ ∈ Q(x∗, h(x∗)), c ∈ F (g(y)) and d∗ ∈ F (h(x∗)).

Theorem 3.3. Assume that
(a) g, h : K → K are continuous and surjective, set-valued mappings

F : K → 2Y and Q : K × K → 2Y are continuous and P is upper
semicontinuous,

(b) a single-valued mapping T : K ×K → Y satisfies
(b1) for x ∈ K, T (x, x) ∈ P (x),
(b2) for x, y ∈ K,

a− b + c− d− T (x, y) ∈ P (x)

for any a ∈ Q(x, g(y)), b ∈ Q(x, h(x)), c ∈ F (g(y)) and d ∈
F (h(x)),

(b3) for x ∈ K the set {y ∈ K : T (x, y) 6∈ P (x)} is convex,
(c) (F, Q) is locally non-positive at x0 ∈ K with respect to (g, h), and there

exists a nonempty compact and convex subset D of K ∩ N(x0) such
that for all x ∈ K ∩N(x0) \D there exists y ∈ D satisfying

a− b + c− d 6∈ P (x)

for any a ∈ Q(x, g(y)), b ∈ Q(x, h(x)), c ∈ F (g(y)) and d ∈ F (h(x)).

(d) g and F are linear and Q is linear in the second argument.
Then (FQ-CP) has a solution in the neighborhood of x0, that is, there exists
x∗ ∈ K ∩N(x0) such that,

a∗ + b∗ = 0 for any a∗ ∈ Q(x∗, h(x∗)) and b∗ ∈ F (h(x∗))
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and for y ∈ K,

a∗y + c ∈ P (x∗) for any a∗y ∈ Q(x∗, g(y)) and c ∈ F (g(y)).

Proof. The conclusion follows directly from Theorem A and Theorem 3.1. ¤
Remark 3.1. Though Theorem A is used to prove Theorem 3.3 and Theorem B
is used to prove Theorem 3.1 and Theorem 3.2, Theorem 3.1, 3.2 and 3.3 extend
and generalize Theorems A and B.

References

[1] Y. P. Fang and N. J. Huang, The vector F -complementarity problem with demipseu-
domonotone mappings in Banach spaces, Appl. Math. Lett. 16 (2003), 1019–1024.

[2] F. Ferro, A minimax theorem for vector-valued functions, J. Optim, Theory Appl. 60
(1989), 19–31.

[3] N. J. Huang and J. Li, F -implicit complementarity problems in Banach spaces, Z. Anal.
Anwendungen 23 (2004), 293–302.

[4] B. S. Lee, Mixed vector FQ-implicit variational inequalities with FQ-complementatity
problems, submitted.

[5] B. S. Lee, M. F. Khan, and Salahuddin, Vector F -implicit complementarity problems with
corresponding variational inequality problems, Appl. Math. Lett. 20 (2007), 433–438.

[6] J. Li and N. J. Huang, Vector F -implicit complementarity problems in Banach spaces,
Appl. Math. Lett. 19 (2006), 464–471.

[7] H. Y. Yin, C. X. Xu, and Z. X. Zhang, The F -complementarity problems and its equiva-
lence with the least element problem, Acta Math. Sinica 44 (2001), 679–686.

Department of Mathematics
Kyungsung University
Busan 608-736, Korea
E-mail address: bslee@ks.ac.kr


