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MIXED VECTOR FQ-IMPLICIT VARIATIONAL
INEQUALITY WITH LOCAL NON-POSITIVITY

BYUNG-S00 LEE

ABSTRACT. This paper introduces a local non-positivity of two set-valued
mappings (F, Q) and considers the existences and properties of solutions
for set-valued mixed vector F'Q-implicit variational inequality problems
and set-valued mixed vector F'@Q-complementarity problems in the neigh-
borhood of a point belonging to an underlined domain K of the set-valued
mappings, where the neighborhood is contained in K.

This paper generalizes and extends many results in [1, 3-7].

1. Introduction
F-complementarity problem (F-CP); finding « € K such that
(Tz,z)+ F(z) = 0and (Tx,y)+ F(y) > Oforally € K,

and corresponding variational inequality problem;
finding z € K such that

(Tx,y —z) + F(y) — F(z) > 0forall y € K,

where K is a nonempty closed and convex cone of a real Banach space X with
its dual X*, T : K — X* is a mapping and F' : K — (—00,+00) is a positively
homogeneous and convex function, were firstly considered in [7].

In 2003, Fang and Huang [1] considered a vector F-complementarity prob-
lem with demi-pseudomonotone mappings in Banach spaces by considering the
solvability of the problems. Huang and Li [3] studied a scalar F-implicit vari-
ational inequality problem and another F-implicit complementarity problem
in Banach spaces in 2004. Recently, the result of the scalar case in [3] was
extended and generalized to the vector case by Li and Huang [6] . The equiv-
alence between the F-implicit variational inequality problem and F-implicit
complementarity problem was presented and some new existence theorems of
solutions for F-implicit variational inequality problems were also proved.
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In 2007, Lee, Khan, and Salahuddin [5] generalized some results of [3, 6] to
more generalized vector case. They introduced a generalized vector F-implicit
complementarity problem and corresponding generalized vector F-implicit vari-
ational inequality problem in Banach spaces and proved the equivalence be-
tween them under certain assumptions. Furthermore, they derived some new
existence theorems of solutions for the generalized vector F-implicit comple-
mentarity problems and the generalized vector F-implicit variational inequality
problems under some suitable assumptions without any monotonicity.

Recently, the following mixed vector F'Q-implicit variational inequality prob-
lem (FQ-VI) and corresponding mixed vector FQ-implicit complementarity
problems (FQ-CP) for set-valued mappings were considered in [4];

(FQ-VI); find z € K such that p — s+ w — z € P(z) for any p € Q(z,g(y)),
s € Qz,h(x)), w e F(g(y)), and z € F(h(zx)), where y € K.

(FQ-CP); find = € K such that

(a) p+w € P(x) for any p € Q(x,¢(y)) and w € F(g(y)), where y € K,
and

(b) s+ 2z = 0 for any s € Q(z,h(x)) and z € F(h(z)), where K is a
nonempty closed convex cone of a real Banach space X and {P(x) :
x € K} is a family of nonempty pointed closed convex cones with the
apex at the origin in a real Banach space Y. Mappings g, h : K — K
are single-valued, F': K — 2Y and Q : K x K — 2 are set-valued.

The following Theorem A and Theorem B in [4] show the equivalence between
(FQ-VI) and (FQ-CP) and some existence theorems of solutions for them under
some suitable assumptions without monotonicity, respectively.

Theorem A. Assume that a set-valued mapping F : K — 2Y is positively
homogeneous, a set-valued mapping Q : K x K — 2Y s also positively homo-
geneous in the second argument and g : K — K is surjective. Then (FQ-VI)
is equivalent to (FQ-CP).

Theorem B. Let K be a nonempty closed convex subset of X and P : K — 2Y
be upper semicontinuous on K. Assume that

(a) g, h : K — K are continuous, F : K — 2V is lower semicontinuous
and Q : K x K — 2Y is lower semicontinuous in two arguments,

(b) there exists a single-valued mapping T : K x K — 'Y satisfying
(bl) forxz e K, T(z,z) € P(x),
(b2) forz, ye K,

a—b+c—d—-T(z,y) € P(x)

for any a € Q(z,9(y)), b € Q(z,h(x)), c € F(g(y)) and d €
F(h(z)),
(b3) for x € K the set {y € K : T(x,y) € P(x)} is convez,
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(¢c) there exists a nonempty compact conver subset D of K such that for
all x € K\ D there exists a y € D satisfying a —b+ ¢ —d & P(x) for
some a € Q(z,g(y)), b€ Q(x, h(x)), ¢ € F(g(y)) and d € F(h(x)).
Then (FQ-VI) has a solution. Furthermore, the solution set of (FQ-VI) is
closed.

This paper introduces a local non-positivity of set-valued mappings (F, Q)
and considers the existences and properties of solutions for (FQ-VI) and (FQ-
CP) in the neighborhood of a point belonging to an underlined domain K of
the set-valued mappings, where the neighborhood is contained in K.

This paper generalizes and extends many results in [1, 3-7].

2. Preliminaries

Remark that P(z), z € K is a closed set such that
(i) AP(x) C P(z), \> 0,2 € K,

(ii) P(z) + P(x) C P(z), z € K,

(iii) P(z) N (—=P(z)) = {0}, z € K.

An ordered Banach space (Y, P(x)) is a real Banach space with an ordering
defined by a closed cone P(z) CY as for any y, z € Y,

y>z ifand onlyif y—z€ P(x),
yZ 2z ifand only if y—z¢ P(x).

Remark that
z<0 ifandonlyif ze —P(x),

z %0 ifand only if z¢ —P(x),
z>0 ifand only if ze€ P(x
z 20 ifand only if z¢ P(x

);
).
Lemma 2.1 ([1]). Let (Y, P) be an ordered Banach space induced by a pointed
closed cone P. Then x +y € P forx, y € P.

Definition 2.1 ([4]). Let X, Y be two vector spaces and K be a cone of X.
A set-valued mapping F : K — 2Y is said to be positively homogeneous if
F(az) = aF(z) for all x € K and a > 0. F is said to be linear if F(az+ 8y) =
aF(z)+ pF(y) forx,ye K,a+8=1,a, 8>0.

Definition 2.2. A set-valued mapping W : K ¢ X — 2V is upper semicontin-
uous at xg € K if every open set V' containing W (z) there exists an open set
U containing zo such that W(U) C V. W is lower semicontinuous at zo € K if
for every open set V intersecting W (z) there exists an open set U containing
xo such that W(z) NV # § for every x € U. W is upper semicontinuous (lower
semicontinuous) on K if it is upper semicontinuous (lower semicontinuous) at
every point of K. W is continuous on K if it is both upper semicontinuous and
lower semicontinuous on K.
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Lemma 2.2. Let W : X — 2Y be a set-valued mapping and xo € X.

(i) W is upper semicontinuous at xqy if and only if for any net {x,} C X
with o, — xo and for any net {yo} 'Y with y, € W(x,) such that
Yo — Yo Y, we have yo € W(xp).

(il) W is lower semicontinuous at xo if and only if for any net {x,} C X
with xo, — xo, and for any yo € W(xg), there exists a net {yo} such
that yo € W(z4a) and yo — yo-

Lemma 2.3 ([2]). Let W : X — 2V be a set-valued mapping. If for any x € X,
W (z) is compact, then W is upper semicontinuous at xq if and only if for any
net {xa} C X such that x, — xo and for every y, € W(x,), there exists
Yo € W(xo) and a subnet {ya,} of {ya} such that ya, — yo.

3. Main results

Unless otherwise specified, we assume that K is a nonempty closed convex
cone of a real Banach space X and {P(z) : x € K} is a family of nonempty
pointed closed convex cones with the apex at the origin in a real Banach space
Y.

Definition 3.1. Let ¢, h : K — K be single-valued mappings and F : K — 2V,
Q : K x K — 2Y set-valued mappings. Let P : K — 2V be a set-valued
mapping with nonempty pointed closed convex cones with the apex at the
origin in Y. (F, Q) is said to be locally non-positive at xg € K with respect to
(g, h) if there exist a neighborhood N(zg) of zg and zg € K N IntN(zp) such
that a—b+c—d € —P(x) for any a € Q(z, g(20)), b € Q(z, h(z)), ¢ € F(g(20))
and d € F(h(z)) for x € K N ON(z¢), the boundary of N(xg).

Example 3.1. Let X =Y = R, K = [0,00) and P(z) = [0,00) for all
x € K. Define mappings g, h : K — K by g(x) = 2z and h(z) = 2z,
set-valued mappings F : K — 2% by F(x) = [%x,x], Q: KxK — 2% by
Qx,y) = [%(x +y),x+ y], then (F, Q) is locally non-positive at g = 0 € K
with respect to (g,h). If we take a neighborhood N(0) = (—3%,3) of 29 =0
and zg = % € KNIntN(0) = [0, %), then for the unique element x = %
of KNON(0) = {%}, we have for any a € Q(%,g(i)), b € Q(%,h(%)),
ceF(g()) andde F (i (3).

In fuct, Q (3.9 (1)) = Q (3.
Flo(3) = F(3) = (L4 F (n

Theorem 3.1. Let K be a nonempty closed and convexr subset of X. Let
P : K — 2Y be a set-valued mapping with nonempty pointed closed convex
cones with the apex at the origin in'Y . Assume that
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(a) single-valued mappings g, h : K — K are continuous and set-valued
mappings F : K — 2Y, Q : K x K — 2V are continuous and P is
upper semicontinuous,

(b) a single-valued mapping T : K x K —'Y satisfies
(bl) forxz e K, T(x,z) € P(x),

(b2) forz, y e K,
a—b+c—d—T(z,y) € P(x)
for any a € Q(z,9(y)), b € Qz,h(x)), c € F(g(y)) and d €
F(h(x)),
(b3) for xz € K the set {y € K : T(x,y) € P(x)} is convez,

(¢) (F,Q) is locally non-positive at xy € K with respect to (g, h) and there
exists a nonempty compact convex subset D of K NN (x) such that for
allz € (KN N(xp))\ D there exists y € D satisfying

a—b+c—d¢g P(x)
for any a € Q(z,9(y)), b € Qz,h(x)), c€ F(g(y)) and d € F(h(x)),

(d) g, h and F are linear and Q is linear in the second argument.

Then (FQ-VI) has a solution in the neighborhood of xq, that is, there exists
x* € KN N(xzg) such that, fory € K

a* —b"+c—d € P(z")
for any o € Q(a", 9(y)), b" € Q(z", h(z")), c€ F(g(y)) and d* € F(h(z")).
Proof. Since (F, Q) is locally non-positive at xg € K with respect to (g, h), we
can assume that N(zg) is a closed and convex set without loss of generality.

Since K N N(zp) is also closed and convex, from Theorem B, (FQ-VI) has a
solution z* € K N N(xp) such that, for y € K N N(xg)

(3.1) a* —b"+c—d* € P(x")
for any a* € Q(x*,g(y)), b* € Q(z*, h(z*)), c € F(g(y)) and d* € F(h(x*)).

Now we show that for y € K, (3.1) also holds.

(i) If 2* € K NIntN(xg), then N(z)\{z*} is a neighborhood of the origin
and so it is absorbing. For any y € K, there exists t € (0, 1) such that t(y—z*) €
N(zo)\{z*} and so y; ==ty + (1 —t)z* € K N N(zp). Hence
(3.2) ay —b"+¢ —d" € P(z")
for any af € Q(z*,g(yt)), b* € Q(a”, h(z7)), ¢t € F(g(yr)) and d* € F(h(z")).

On the other hand, the following set

A={yeK:a—b+c—de P(x) for any a € Q(x,9(y)),b € Q(z, h(z))

c € F(g(y)) and d € F(h(x))},
is convex for all z € K. In fact, if y1, yo € A, then for x € K,

a1 —b+c; —de P(x)
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for any a1 € Q(x,g(y1)), b € Q(z, h(x)), c1 € F(g(y1)) and d € F(h(z)) and
az —b+co —d € P(x)

for any ag € Q(z,9(y2)), b € Q(z, h(x)), c2 € Fg(y2)) and d € F(h(z)).
Hence for ¢ € (0,1), from the condition (d), we have, for z € K

tay + (1 —t)ag —b+tc; + (1 —t)ea —d € P(x)
for any ta; + (1 —t)as € tQ(x,g(v1)) + (1 — ) Q(z, g(y2))
=Q(z,g(tyr + (1 —t)y2)),
b€ Q(z, h(x)),
ter + (1 —t)ez € tF(g(y1)) + (1 — ) F(9(y2))
= F(g(tyr + (1 = t)y2)), and
d € F(h(z)).
Hence ty; + (1 — t)y2 € A, which shows that A is convex. Thus by the conti-
nuities of g, h, F' and @ from (3.2) we have for y € K
a* —b"4+c—d € P(x")
for any a* € Q(x*,g(y)), b* € Q(z*, h(z*)), c € F(g(y)) and d* € F(h(x*)).

(ii) Since (F, Q) is locally non-positive at xg € K with respect to (g, h), for
x* € K NON(zg) there exists zop € K NIntN(xg) such that

(3.3) ag —b" +cop —d* € —P(x™)

for any ag € Q(z*, g(20)), b* € Q(z*, h(z*)), co € F(g(20)) and d* € F(h(z*)).

By a similar method, for any y € K, there exists a ¢t € (0,1) such that
t(y — z0) € N(x0)\{20}, 80 2t : =ty + (1 —t)zg € K N N(zg). Hence it follows
from (3.1)

(3.4) a —b" +c¢ —d* € P(x")

for any a; € Q(z*,g(2)), b* € Q(z*, h(x*)), ¢t € F(g(z)) and d* € F(h(z*)).
Letting ¢t — 0 in (3.4), we obtain

(3.5) ag —b" +cog —d* € P(z")

for any ag € Q(z*, g(20)), b* € Q(z*, h(z*)), co € F(g(20)) and d* € F(h(z*)).
Thus by (3.3) and (3.5),

(36) ap—b"+cog—d* =0

for any ag € Q(z7, 9(20)), b* € Q(z", h(z")), co € F(g(20)) and d* € F(h(z")).
Thus by (3.4) and (3.6), we have

(3.7) ta;y + (1 —6)b* —ag +ter + (1 —t)d* — ¢o € P(z™)

for any ai € Q(z*,9(z1)), b* € Q(z, h(z")), ao € Q(z",9(20)), cr € F(g(=1)),
d* € F(h(z*)) and ¢ € F(g(20)).
Hence by (3.6) and (3.7)

(3.8) af —b" 4+ ¢ —d" € P(z¥)
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for any a} € Q(z*, g(zt)), b* € Q(a*, h(z*)), ¢+ € F(g(2t)), and d* € F(h(z*)).
Letting ¢ — 1 in (3.8), by the condition (d) we have

a* —b"+c—d" e P(z¥)

for any a* € Q(z*,9(y)), b* € Q(z", h(z7)), c € F(g(y)) and d* € F(h(z")).
Hence by (i) and (ii), the proof is completed. O

Letting D = K in the condition (c¢) of Theorem 3.1, we have the following
result as a corollary.

Theorem 3.2. Let K be a nonempty compact and convexr subset of a real
Banach space X, and assume that the condition (a), (b) and (d) of Theorem 3.1
hold with the following condition (c)’ instead of (¢) of Theorem 3.1;

(¢)" the mappings (F, Q) is locally non-positive at xg € K with respect to
(g, h).
Then (FQ-VI) has a solution in the neighborhood of xq, that is, there exists
x* € KN N(xg) such that, fory € K

a* —b"+c—d" e P(x")
for any a* € Q(z",9(y)), b* € Q(z™, h(z")), c€ F(g(y)) and d* € F(h(z")).
Theorem 3.3. Assume that

(a) g, h : K — K are continuous and surjective, set-valued mappings
F:K =2V and Q: K x K — 2Y are continuous and P is upper
semicontinuous,

(b) @ single-valued mapping T : K x K — 'Y satisfies
(bl) forz e K, T(x,x) € P(z),

(b2) forz,ye K,
a—b+c—d—T(z,y) € P(x)
for any a € Q(z,9(y)), b € Q(z,h(z)), c € F(g(y)) and d €
F(h(z)),
(b3) for x € K the set {y € K : T(x,y) & P(x)} is convex,

(¢) (F,Q) is locally non-positive at xo € K with respect to (g, h), and there
exists a nonempty compact and conver subset D of K N N(xo) such
that for all x € KN N(xo) \ D there exists y € D satisfying

a—b+c—d¢g P(x)

for any a € Q(z,9(y)), b€ Q(z,h(x)), c€ F(g(y)) and d € F(h(x)).

(d) g and F are linear and Q is linear in the second argument.

Then (FQ-CP) has a solution in the neighborhood of xq, that is, there exists
x* € KN N(zg) such that,

a*+b"=0 foranya® € Q(z*, h(z™)) and b* € F(h(z"))
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and fory e K,
a, +ce P(z*)  for any a, € Q(z*,9(y)) and c € F(g(y)).
Proof. The conclusion follows directly from Theorem A and Theorem 3.1. [

Remark 3.1. Though Theorem A is used to prove Theorem 3.3 and Theorem B
is used to prove Theorem 3.1 and Theorem 3.2, Theorem 3.1, 3.2 and 3.3 extend
and generalize Theorems A and B.
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