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MIXED VECTOR FQ-IMPLICIT VARIATIONAL
INEQUALITIES WITH FQ-COMPLEMENTARITY

PROBLEMS

Byung-Soo Lee

Abstract. This paper introduces new mixed vector FQ-implicit
variational inequality problems and corresponding mixed vector
FQ-implicit complementarity problems for set-valued mappings,
and studies the equivalence between them under certain assump-
tions in Banach spaces. It also derives some new existence theorems
of solutions for them with examples under suitable assumptions
without monotonicity.

This paper generalizes and extends many results in [8, 10, 19-
22].

1. Introduction

Variational inequality problems and complementarity problems have
many applications in nonlinear analysis including optimization, econom-
ics, finance, engineering, mechanics and game theory [4, 6, 11, 12].
In particular, there have been many discussions on the relations be-
tween complementarity problems and corresponding variational inequal-
ity problems [1-3, 5, 8, 11-19]. In [2], the authors considered the relation
between the multivalued implicit variational inequality problems and
the multivalued implicit complementarity problems. Cottle and Yao [5]
considered some existences of solutions for a nonlinear complementarity
problem involving a pseudo-monotone mapping on a closed convex cone
in Hilbert spaces, and showed some necessary and sufficient conditions
for the existence of solutions to some variational inequality problems. In
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2001, Yin, Xu and Zhang [22] introduced a class of F -complementarity
problem (F-CP) for finding x ∈ K such that

〈Tx, x〉+ F (x) = 0 and 〈Tx, y〉+ F (y) ≥ 0 for all y ∈ K,

where K is a nonempty closed and convex cone of a real Banach space
X, T : K → X?, the dual space, is a mapping and F : K → (−∞, +∞)
is a function, and proved that it is equivalent to the following variational
inequality problems:

find x ∈ K such that

〈Tx, y − x〉+ F (y)− F (x) ≥ 0 for all y ∈ K,

where F is a positively homogeneous and convex function. They also
proved the existence of solutions for (F -CP) under some assumptions
with F -pseudo-monotonicity.

In 2003, Fang and Huang [8] studied a class of vector F -complementa-
rity problems with demi-pseudomonotone mappings in Banach spaces by
considering the solvability of the problems. Huang and Li [10] studied
a class of scalar F -implicit variational inequality problems and another
class of F -implicit complementarity problems in Banach spaces in 2004.
Recently, the result of the scalar case in [10] was extended and general-
ized to the vector case by Li and Huang [20]. The equivalence between
the F -implicit variational inequality problem and F -implicit comple-
mentarity problem was presented and some new existence theorems of
solutions for F -implicit variational inequality problems were also proved.

Recently, Lee, Khan and Salahuddin [19] generalized some results of
[10, 20] to more generalized vector case. They introduced a new class
of generalized vector F -implicit complementarity problems and corre-
sponding new class of generalized vector F -implicit variational inequal-
ity problems in Banach spaces and proved the equivalence between them
under certain assumptions. Furthermore, they derived some new exis-
tence theorems of solutions for the generalized vector F -implicit com-
plementarity problems and the generalized vector F -implicit variational
inequality problems by using Fan-KKM Theorem [7] under some suitable
assumptions without any monotonicity.

In this paper, we consider the following mixed vector FQ-implicit
variational inequality problems for set-valued mappings (FQ-VI);
find x ∈ K such that

p− s + w − z ∈ P (x)

for any p ∈ Q(x, g(y)),
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any s ∈ Q(x, h(x)),
any w ∈ F (g(y)), and
any z ∈ F (h(x)), where y ∈ K.

We also discuss the following mixed vector FQ-implicit complemen-
tarity problems for set-valued mappings (FQ-CP) corresponding to (FQ-
VI);
find x ∈ K such that

(a) p + w ∈ P (x)
for any p ∈ Q(x, g(y)) and any w ∈ F (g(y)), where y ∈ K.

and
(b) s + z = 0

for any s ∈ Q(x, h(x)) and any z ∈ F (h(x)),
where K is a cone of a real Banach space X and {P (x) : x ∈ K} is
a family of cones with the apex at the origin in a real Banach space
Y . Mappings g, h : K → K are single-valued, F : K → 2Y and
Q : K×K → 2Y are set-valued. We study the equivalence between (FQ-
VI) and (FQ-CP) under certain assumptions and derive some existence
theorems of solutions for them by using Fan-KKM Theorem under some
suitable assumptions without monotonicity.

2. Preliminaries

Remark 2.1. P (x), x ∈ K is a closed set such that
(i) λP (x) ⊂ P (x), λ > 0, x ∈ K,
(ii) P (x) + P (x) ⊂ P (x), x ∈ K,
(iii) P (x) ∩ (−P (x)) = {0}, x ∈ K.

An ordered Banach space (Y, P (x)) is a real Banach space with an
ordering defined by a closed cone P (x) ⊂ Y as for any y, z ∈ Y ,

y ≥ z if and only if y − z ∈ P (x),

y 6≥ z if and only if y − z 6∈ P (x).

Remark 2.2.
z ≤ 0 if and only if z ∈ −P (x),

z 6≤ 0 if and only if z 6∈ −P (x),

z ≥ 0 if and only if z ∈ P (x),

z 6≥ 0 if and only if z 6∈ P (x).
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Definition 2.1. Let X, Y be two vector spaces and K be a cone of X.
A set-valued mapping F : K → 2Y is said to be positively homogeneous
if F (αx) = αF (x) for all x ∈ K and α ≥ 0. F is said to be linear if
F (αx + βy) = αF (x) + βF (y) for x, y ∈ K, α + β = 1, α, β ≥ 0.

Example 2.1. Put X = Y = R , K = R+ = [0,∞) and set a set-
valued mapping F : R+ → 2R by F (x) = [−x, x] for x ∈ R+, then F is
positively homogeneous and linear.

Definition 2.2. A set-valued mapping F : M(⊂ X) → 2X is called
a KKM-mapping, if for any finite subset A of X, coA ⊂ ⋃

x∈A

F (x), where

coA denotes the convex hull of A.

Lemma 2.1. [8] Let (Y, P ) be an ordered Banach space induced by
a pointed closed cone P . If x, y ∈ P , then x + y ∈ P .

Definition 2.3. A set-valued mapping W : K ⊂ X → 2Y is upper
semicontinuous at x0 ∈ K if for every open set V containing W (x0) there
exists an open set U containing x0 such that W (U) ⊂ V . W is lower
semicontinuous at x0 ∈ K if for every open set V intersecting W (x0)
there exists an open set U containing x0 such that W (x) ∩ V 6= ∅ for
every x ∈ U . W is upper semicontinuous (resp. lower semicontinuous)
on K if it is upper semicontinuous (resp. lower semicontinuous) at every
point of K. W is continuous on K if it is both upper semicontinuous
and lower semicontinuous on K.

Lemma 2.2. Let W : X → 2Y be a set-valued mapping and x0 ∈ X.

(i) W is upper semicontinuous at x0 if and only if for any net {xα} ⊂
X with xα → x0 and for any net {yα} in Y with yα ∈ W (xα) such
that yα → y0 in Y , we have y0 ∈ W (x0).

(ii) W is lower semicontinuous at x0 if and only if for any net {xα} ⊂ X
with xα → x0, and for any y0 ∈ W (x0), there exists a net {yα}
such that yα ∈ W (xα) and yα → y0.

Lemma 2.3. [9] Let W : X → 2Y be a compact set-valued mapping
and x0 ∈ X. Then W is upper semicontinuous at x0 if and only if for
any net {xα} ⊂ X such that xα → x0 and for every yα ∈ W (xα), there
exists y0 ∈ W (x0) and a subnet {yαβ

} of {yα} such that yαβ
→ y0.

Fan-KKM Theorem. [7] Let M be a nonempty subset of a Hausdorff
topological vector space X and G : M → 2X be a KKM-mapping. If
G(x) is closed in X for every x ∈ M and compact for some x ∈ M , then⋂
x∈M

G(x) is nonempty.
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3. Main Results

In this section, unless otherwise specified, we assume that K is a
nonempty closed convex cone of a real Banach space X and {P (x) : x ∈
K} is a family of nonempty pointed closed convex cones with the apex
at the origin in a real Banach space Y .

(FQ-CP) implies (FQ-VI) easily, now we consider the converse.

Theorem 3.1. Assume that F : K → 2Y is positively homogeneous,
Q : K×K → 2Y is positively homogeneous in the second argument and
g, h : K → K is surjective. If x solves (FQ-VI), then it solves (FQ-CP).

Proof. Let x(∈ K) solve (FQ-VI), then

(3.1) p− s + w − z ∈ P (x)

for any p ∈ Q(x, g(y)), s ∈ Q(x, h(x)), w ∈ F (g(y)) and z ∈ F (h(x)),
where y ∈ K.

Since g is surjective and K is a cone, we can put g(y) = 2h(x), for
some y ∈ K. On the other hand, by the positive homogeneity of F and
Q in the second argument, we have

Q(x, g(y)) = Q(x, 2h(x)) = 2Q(x, h(x)) and

F (g(y)) = F (2h(x)) = 2F (h(x)).

Hence for any s ∈ Q(x, h(x)) and any z ∈ F (h(x)). From (3.1)

s + z = 2s− s + 2z − z ∈ P (x).

Putting g(y) = 1
2h(x) for some y ∈ K, by the similar method, we have

s + z ∈ −P (x)

for any s ∈ Q(x, h(x)) and any z ∈ F (h(x)).
Since P (x) is a pointed cone,

s + z = 0.

Thus we obtain

p + w = p− s + w − z + s + z

= p− s + w − z

∈ P (x)

for any p ∈ Q(x, g(y)), s ∈ Q(x, h(x)), w ∈ F (g(y)) and z ∈ F (h(x)),
where y ∈ K
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Now we consider the existence of solutions to (FQ-VI) and the prop-
erties of the solution set.

Theorem 3.2. Let K be a nonempty closed convex subset of X and
P : K → 2Y be upper semicontinuous on K. Assume that

(a) g, h : K → K are continuous, F : K → 2Y is lower semicontinuous
and Q : K ×K → 2Y is lower semicontinuous in two arguments.

(b) there exists a single-valued mapping T : K ×K → Y satisfying
(b1) for x ∈ K, T (x, x) ∈ P (x),
(b2) for x, y ∈ K,

p− s + w − z − T (x, y) ∈ P (x)

for any p ∈ Q(x, g(y)), s ∈ Q(x, h(x)), w ∈ F (g(y))

and z ∈ F (h(x)),

(b3) for x ∈ K the set {y ∈ K : T (x, y) 6∈ P (x)} is convex,
(c) there exists a nonempty compact convex subset D of K such that

for all x ∈ K \D there exists a y ∈ D satisfying

p− s + w − z 6∈ P (x)

for some p ∈ Q(x, g(y)), s ∈ Q(x, h(x)), w ∈ F (g(y)) and z ∈ F (h(x)).

Then (FQ-VI) has a nonempty closed solution set.

Proof. Define a set-valued mapping G : K → 2D by

G(y) = {x ∈ D : p− s + w − z ∈ P (x) for any p ∈ Q(x, g(y))

, s ∈ Q(x, h(x))w ∈ F (g(y)) and z ∈ F (h(x))} for y ∈ K,

then G(y) is closed in D by the condition (a). In fact, let {xα} be a net
in G(y) converging to x0, then

pα − sα + w − zα ∈ P (xα)

for any pα ∈ Q(xα, g(y)), sα ∈ Q(xα, h(xα)), w ∈ F (g(y))

and zα ∈ F (h(xα)).

Since F and Q are lower semicontiuous on K and K × K, respec-
tively, and g and h are continuous, for any p0 ∈ Q(x0, g(y)), s0 ∈
Q(x0, h(x0)) and z0 ∈ F (h(x0)), there exist nets {pα} in Q(xα, g(y)),
{sα} in Q(xα, h(xα)) and {zα} in F (h(xα)) such that pα → p0, sα → s0

and zα → z0. Hence pα − sα + w − zα → p0 − s0 + w − z0. Since
pα − sα + w − zα ∈ P (xα) and P is upper semicontinuous, we have

p0 − s0 + w − z0 ∈ P (x0)

for any p0 ∈ Q(x0, g(y)), s0 ∈ Q(x0, h(x0)), w ∈ F (g(y))
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and z0 ∈ F (h(x0)).

Hence x0 ∈ G(y), which means that G(y) is closed in D. Since every
element x ∈ ⋂

y∈K

G(y) is a solution of (FQ-VI), we have to show that
⋂

y∈K

G(y) is nonempty. So it is sufficient to prove that {G(y) : y ∈ K}
has the finite intersection property since K is compact.

Let {yi : i = 1, 2, · · · , n} be a finite subset of K and set B = co(D ∪
{yi : i = 1, 2, · · · , n}). Then B is a compact and convex subset of K.
Define a set-valued mapping F1 : B → 2B by, for any y ∈ B

F1(y) = {x ∈ B : p− s + w − z ∈ P (x) for any p ∈ Q(x, g(y)),

s ∈ Q(x, h(x)), w ∈ F (g(y)) and z ∈ F (h(x))},
then F1(y) is nonempty. In fact, by the condition (b1), for y ∈ B,
T (y, y) ∈ P (y) and by the condition (b2), for y ∈ B

p− s + w − z − T (y, y) ∈ P (y)

for any p ∈ Q(y, g(y)), s ∈ Q(y, h(y)), w ∈ F (g(y)) and z ∈ F (h(y)).

Hence by Lemma 2.1, for y ∈ B

p− s + w − z ∈ P (y)

for any p ∈ Q(y, g(y)), s ∈ Q(y, h(y)), w ∈ F (g(y)) and z ∈ F (h(y)),

which shows that F1(y) is nonempty.
By the similar method to the case of G(y), for any y ∈ B, F1(y)

is closed. Since F1(y) is a closed subset of a compact set B, F1(y) is
compact. Now we define another set-valued mapping F2 : B → 2B by,
for any y ∈ B

F2(y) = {x ∈ B : T (x, y) ∈ P (x)},
then F2 is a KKM-mapping. In fact, suppose that there exists a finite
subset {ui : i = 1, 2, · · · , n} of B and λi ≥ 0 (i = 1, 2, · · · , n) with
n∑

i=1
λi = 1 such that u =

n∑
i=1

λiui 6∈
n⋃

j=1
F2(uj). Then T (u, uj) 6∈ P (u)

(j = 1, 2, · · · , n). So from the condition (b3), T (u, u) 6∈ P (u), which
contradicts the condition (b1). Hence F2 is a KKM-mapping. Now we
show that F1 is also a KKM-mapping. If, for y ∈ B, x ∈ F2(y), then
T (x, y) ∈ P (x). Hence by the condition (b2), from Lemma 2.1 we have

p− s + w − z ∈ P (x)

for any p ∈ Q(x, g(y)), s ∈ Q(x, h(x)), w ∈ F (g(y)) and z ∈ F (h(x)).
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Thus x ∈ F1(y). Consequently, by the F-KKM Theorem, there exists
x∗ ∈ B such that x∗ ∈ F1(y) for all y ∈ B, that is,

p∗ − s∗ + w − z∗ ∈ P (x∗)
for any p∗ ∈ Q(x∗, g(y)), s∗ ∈ Q(x∗, h(x∗)), w ∈ F (g(y))

and z∗ ∈ F (h(x∗)).

By the condtion (c) we have x∗ ∈ D. Moreover, x∗ ∈ G(yi) (i =

1, 2, · · · , n), i.e.,
n⋂

i=1
G(yi) is nonempty, so {G(y) : y ∈ K} has the

finite intersection property. Since g, h are continuous F , Q are lower
semicontinuous and P is upper semicontinuous, the solution set of (FQ-
VI) is closed.

Example 3.1. Let X = Y = R2 and K = R2
+ = [0,∞) × [0,∞).

Put, for x ∈ K P (x) = K and D = [0, 1]× [0, 1]. Define g, h : K → K,
F : K → 2Y and Q : K×K → 2Y by, for x = (x1, x2) and y = (y1, y2) ∈
K,

g(y) =
(
y2,

y1

2

)
,

h(x) =
(x2

3
,
x1

4

)
,

F (x) =
[x1

2
, x1

]
× {0},

Q(x, y) =
[
y1 + y2

2
, y1 + y2

]
× {0}.

Then

Q(x, g(y)) = Q
(
(x1, x2),

(
y2,

y1

2

))
=

[y2

2
+

y1

4
, y2 +

y1

2

]
× {0},

Q(x, h(x)) = Q
(
(x1, x2),

(x2

3
,
x1

4

))
=

[x2

6
+

x1

8
,
x2

3
+

x1

4

]
× {0},

F (g(y)) = F
((

y2,
y1

2

))
=

[y2

2
, y2

]
× {0},

F (h(x)) = F
((x2

3
,
x1

4

))
=

[x2

6
,
x2

3

]
× {0}.

If we take a mapping T : K ×K → Y defined by

T (x, y) =
((

y1

4
+

2y2

3

)
−

(
x1

4
+

2x2

3

)
, 0

)
,
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then for any p ∈ Q(x, g(y)), s ∈ Q(x, h(x)), w ∈ F (g(y)) and z ∈
F (h(x)),

p− s + w − z − T (x, y) ∈ P (x).
In fact, for

p =
(y1

4
+

y2

2
, 0

)
∈ Q(x, g(y))

s =
(x2

3
+

x1

4
, 0

)
∈ Q(x, h(x))

w =
(y2

2
, 0

)
∈ F (g(y))

z =
(x2

3
, 0

)
∈ F (h(x)),

p− s + w − z − T (x, y) =
(y2

3
, 0

)
∈ K.

For x ∈ K, let A = {z ∈ K : T (x, z) 6∈ K} then A is convex. In fact,
for z1 = (z1

1 , z
1
2), z2 = (z2

1 , z
2
2) ∈ A, and 0 ≤ α ≤ 1,

z1
1

4
+

2z1
2

3
<

x1

4
+

2x2

3
,

z2
1

4
+

2z2
2

3
<

x1

4
+

2x2

3
,

hence
αz1

1

4
+

2αz1
2

3
+

(1− α)z2
1

4
+

2(1− α)z2
2

3
<

x1

4
+

2x2

3
,

which shows that αz1 + (1 − α)z2 ∈ A. If x ∈ K\D, then x1 > 1 and
x2 > 1. Hence there exists y = (y1, y2) =

(
1
3 , 2

3

) ∈ D such that

p− s + w − z =
(

3y1 + 12y2 − 3x1 − 8x2

12
, 0

)
/∈ K

for

p =
(y1

4
+

y2

2
, 0

)
∈ Q(x, g(y))

s =
(x2

3
+

x1

4
, 0

)
∈ Q(x, h(x))

w =
(y2

2
, 0

)
∈ F (g(y))

z =
(x2

3
, 0

)
∈ F (h(x)).

The upper semicontinuity of P and the lower semicontinuities of F and
Q are easily shown. Thus all the conditions in Theorem 3.2 hold. And
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{(0, 0)}(⊂ K) is the solution set of (FQ-VI), which is closed. In fact, if
there exists x = (x1, x2) 6= (0, 0) in K such that

p− s + w − z ∈ P (x) = K

for any

p ∈ Q(x, g(y))

s ∈ Q(x, h(x))

w ∈ F (g(y))

z ∈ F (h(x)), for y ∈ K,

then for y = (y1, y2) ∈ K,
(y1

4
+

y2

2
− x2

3
− x1

4
+

y2

2
− x2

3
, 0

)
∈ K.

Hence 3y1 +12y2 ≥ 3x1 +8x2 > 0, which is a contradiction for y1 = 1
4x1

and y2 = 1
6x2, for example.

Putting D = K in the condition (c) of Theorem 3.2, we have the
following corollary.

Theorem 3.3. Let K be a nonempty compact and convex subset of
X. If we assume the conditions (a) and (b) of Theorem 3.2, then the
solution set of (FQ-VI) is nonempty closed.

Theorem 3.4. Assume that g and h are continuous, F and Q are
lower semicontinuous, g is surjective, F and Q are positively homoge-
neous. If we also assume the conditions (b) and (c) in Theorem 3.2,
then (FQ-CP) has a solution. Furthemore, the solution set of (FQ-CP)
is also nonempty closed.

Remark 3.1. Our results reduce to the costant cone and the single-
valued mappings F and Q shown in the previous results in [8, 10, 19,
20, 22]. Our results can be considered as the vector version of the recent
result by Wu and Huang [21].
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