• Title/Summary/Keyword: minimal subgroups

Search Result 36, Processing Time 0.035 seconds

SOME PROPERTIES OF TL-GROUPS

  • Kim, Jae-Gyeom
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.285-292
    • /
    • 1998
  • We introduce the notion of TL-p-subgroups that is an ex-tension of the notion of fuzzy p=subgroups and show that a torsion TL-subgroup of an Abelian group with T=${\bigwedge}$ can be written as the intersection of its minimal TL-p-subgroups.

Evaluation Subgroups of Mapping Spaces over Grassmann Manifolds

  • Abdelhadi Zaim
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.131-139
    • /
    • 2023
  • Let Vk,n (ℂ) denote the complex Steifel and Grk,n (ℂ) the Grassmann manifolds for 1 ≤ k < n. In this paper, we compute, in terms of the Sullivan minimal models, the evaluation subgroups and, more generally, the relative evaluation subgroups of the fibration p : Vk,k+n (ℂ) → Grk,k+n (ℂ). In particular, we prove that G* (Grk,k+n (ℂ), Vk,k+n (ℂ) ; p) is isomorphic to Grel* (Grk,k+n (ℂ), Vk,k+n (ℂ) ; p) ⊕ G* (Vk,k+n (ℂ)).

MINIMAL DEL PEZZO SURFACES OF DEGREE 2 OVER FINITE FIELDS

  • Trepalin, Andrey
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1779-1801
    • /
    • 2017
  • Let X be a minimal del Pezzo surface of degree 2 over a finite field ${\mathbb{F}}_q$. The image ${\Gamma}$ of the Galois group Gal(${\bar{\mathbb{F}}}_q/{\mathbb{F}}_q$) in the group Aut($Pic({\bar{X}})$) is a cyclic subgroup of the Weyl group W($E_7$). There are 60 conjugacy classes of cyclic subgroups in W($E_7$) and 18 of them correspond to minimal del Pezzo surfaces. In this paper we study which possibilities of these subgroups for minimal del Pezzo surfaces of degree 2 can be achieved for given q.

r-HOMOMORPHISMS IN TRANSFORMATION GROUPS

  • Yu, Jung Ok;Shin, Se Soon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.555-562
    • /
    • 2008
  • In this paper, it will be given a necessary and sufficient condition for a function to be an r-homomorphism in connection with the subgroups of the automorphism group of a universal minimal set.

  • PDF

GALOIS CORRESPONDENCES FOR SUBFACTORS RELATED TO NORMAL SUBGROUPS

  • Lee, Jung-Rye
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.253-260
    • /
    • 2002
  • For an outer action $\alpha$ of a finite group G on a factor M, it was proved that H is a, normal subgroup of G if and only if there exists a finite group F and an outer action $\beta$ of F on the crossed product algebra M $\times$$_{\alpha}$ G = (M $\times$$_{\alpha}$ F. We generalize this to infinite group actions. For an outer action $\alpha$ of a discrete group, we obtain a Galois correspondence for crossed product algebras related to normal subgroups. When $\alpha$ satisfies a certain condition, we also obtain a Galois correspondence for fixed point algebras. Furthermore, for a minimal action $\alpha$ of a compact group G and a closed normal subgroup H, we prove $M^{G}$ = ( $M^{H}$)$^{{beta}(G/H)}$for a minimal action $\beta$ of G/H on $M^{H}$.f G/H on $M^{H}$.TEX> H/.