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FINITE p-GROUPS WHOSE NON-ABELIAN SUBGROUPS

HAVE THE SAME CENTER

Lifang Wang

Abstract. For an odd prime p, finite p-groups whose non-abelian sub-
groups have the same center are classified in this paper.

1. Introduction

The center Z(G) of a group G is a very important concept in group theory.
In some sense, the size of Z(G) can be regarded as a measure of how far G is
from an abelian group. Clearly, Z(G) = G if and only if G is an abelian group.
If G is non-abelian, then, naturally, we hope to investigate finite groups with
“large” center or abelian subgroups. As is well known, the center of a group
may be trivial. However, the center of a finite p-group is always nontrivial.
So we pay our attention to finite p-groups. Some scholars classified finite p-
groups with “large” abelian subgroups. For example, Rédei [6] classified finite
non-abelian groups G of order pn all of whose maximal subgroups are abelian.
Obviously, such groups have “large” center. In fact, |Z(G)| = pn−2. Along
Rédei’s line, Zhang et al. [12, 13] classified finite non-abelian p-groups of all of
whose subgroups of index at most p3 are abelian. On the other hand, some
scholars have studied the structure of finite p-groups with conditions on its
center or centers of its subgroups. For example, Janko [4] studied finite non-
abelian p-groups having exactly one maximal subgroup with a noncyclic center.
Finogenov [2] studied finite p-groups with cyclic commutator group and cyclic
center.

The start point in this paper is to study the influence of the relationship be-
tween the center of a finite p-group and the centers of its non-abelian subgroups
on the structure of a finite p-groups. As is well known, H ∩ Z(G) ≤ Z(H) for
a group G and its each subgroup H . The extreme case is H ∩ Z(G) = Z(H).
In other words, Z(H) ≤ Z(G). We try to classify such finite p-groups G
with Z(H) ≤ Z(G) for each non-abelian subgroup H . However, by using the
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Magma project, we observed there are too many p-groups satisfying the con-
dition. Moreover, it is not difficult to prove that all finite p-groups G with
|G : Z(G)| ≤ p3 satisfy the condition. Hence it is quite difficult to classify such
finite p-groups. A natural question is:

Is it possible to classify finite p-groups G with Z(H) = Z(G) for each non-

abelian subgroup H of G?

The answer is positive. For p = 2, such p-groups were classified in [8]. The
present paper is devoted to the case of p 6= 2. Hence finite p-groups G with
Z(H) = Z(G) are completely classified. It is worth to be mentioned that the
argument of the case of p 6= 2 is quite different from that of p = 2.

For convenience, we introduce the following notation and concepts.
P-group: A finite p-group in which centers of all non-abelian subgroups

coincide.
Q-group: A P-group all of whose non-abelian subgroups are generated by

two elements.
S-group: A P-group which has at least one non-abelian subgroup H with

d(H) > 2.
Obviously, P = Q∪ S and Q∩ S = ∅.
We notice that the non-abelian subgroup of a minimal non-abelian p-group

is itself. We assume a P-group is not minimal non-abelian in this paper.
Suppose that G is a finite p-group. If all subgroups of index pt of G are

abelian and at least one subgroup of index pt−1 of G is not abelian, then G is
called an At-group. Obviously, an A1-group is a minimal non-abelian p-group,
and for arbitrary a fixed integer i, all Ai-subgroups of a P-group have the same
order.

Groups in this paper are finite p-groups and p is an odd prime. We use c(G)
and d(G) to denote the nilpotency class and the minimal number of generators
of a group G respectively. Other notation and terminology are consistent with
that in [3].

2. Preliminary

In this section, we give some lemmas which are useful in the proof of our
results.

Lemma 2.1 ([9, Lemma 2]). Let G be a metabelian p-group and a, b ∈ G. For

any positive integer i and j, let

[ia, jb] = [a, b, a, . . . , a
︸ ︷︷ ︸

i−1

, b, . . . , b
︸ ︷︷ ︸

j−1

].

Then

(1) For any positive integers m and n, [am, bn] =
m∏

i=1

n∏

j=1

[ia, jb](
m

i )(
n

j).

(2) Let n be a positive integer. Then (ab−1)n = an
∏

i+j≤n

[ia, jb](
n

i+j)b−n.
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Lemma 2.2 ([3] or [7], Aufgabe 2, p. 259). Suppose that a finite non-abelian p-
group G has an abelian normal subgroup A, and G/A = 〈bA〉 is cyclic. Then the

map a 7→ [a, b], a ∈ A is an epimorphism from A to G′ and G′ ∼= A/A ∩ Z(G).
In particular, if a non-abelian p-group G has an abelian maximal subgroup,

then |G| = p|G′||Z(G)|.

Lemma 2.3 ([10, Lemma 2.2]). Suppose that G is a finite non-abelian p-group.
Then the following conditions are equivalent:

(1) G is minimal non-abelian;
(2) d(G) = 2 and |G′| = p;
(3) d(G) = 2 and Φ(G) = Z(G).

The following lemma is simple but often used.

Lemma 2.4. If G = 〈x, y〉 is a minimal non-abelian p-group, then Z(G) =
〈xp, yp, [x, y]〉.

Lemma 2.5 ([8, Lemma 2.4]). Let G be a P-group. If x, y ∈ G\Z(G) and

[x, y] = 1, then CG(x) = CG(y).

Some results about P-groups are given in following lemmas.

Lemma 2.6. Let G be a metacyclic p-group, and p an odd prime. Then G is

not a P-group.

Proof. By [11, Theorem 2.1] or see [5] we have

G = 〈a, b|ap
r+s+u

= 1, bp
r+s+t

= ap
r+s

, [a, b] = ap
r

〉,

where r, s, t, u are non-negative integers, r ≥ 1 and u ≤ r. Since

[ap
s+u−1

, b] = [a, b]p
s+u−1

= ap
r+s+u−1

,

H = 〈ap
s+u−1

, b〉 is minimal non-abelian by Lemma 2.3. If G is a P-group, then
bp ∈ Z(H) = Z(G) by Lemma 2.4. Therefore, 1 = [a, bp]. On the other hand,

[a, bp] = [a, b](
p

1)[a, b](
p

2) · · · [a, b, . . . , b](
p

p) = ap
r+1+p2r(p2)+···+ppr(pp)

by Lemma 2.1(1). It follows that ap
r+1

= 1. Since o(a) = pr+s+u, s + u = 1.
Thus |G′| = |〈ap

r

〉| = p. Hence G is minimal non-abelian by Lemma 2.3, which
contradicts to the hypothesis. �

Lemma 2.7. If G is a p-group of maximal class with an abelian maximal

subgroup, then G is a P-group.

Proof. Let A be an abelian maximal subgroup of G and H any non-abelian
subgroup of G. Then G = AH and A ∩H is an abelian maximal subgroup of
H . Hence, Z(H) ≤ A∩H . Since A is abelian, Z(H) ≤ Z(G). By [10, Theorem
2.5], |Z(G)| = p. It follows that Z(H) = Z(G). Hence, G is a P-group. �

Lemma 2.8. Let G be an A2-group. Then G is a P-group if and only if

Z(G) ≤ Φ(G) and |G : Z(G)| = p3.
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Proof. (=⇒) Take one non-abelian proper subgroup H of G. Since G is an
A2-group, H is minimal non-abelian and |G : H | = p. By Lemma 2.3, we have
Z(H) = Φ(H) and |H : Z(H)| = p2. Since Z(H) = Z(G) and Φ(H) ≤ Φ(G),
Z(G) ≤ Φ(G) and |G : Z(G)| = p3.

(⇐=) Let H be any non-abelian proper subgroup of G. Since G ia an A2-
group, H is maximal in G and H is an A1-group. Since Z(G) ≤ Φ(G), Z(G) ≤
H and Z(G) ≤ Z(H). It follows by |G : Z(G)| = p3 that |H : Z(G)| = p2.
Since H is an A1-group, |H : Z(H)| = p2 by Lemma 2.3. Hence Z(G) = Z(H)
and G is a P-group. �

Lemma 2.9. Let G be an A2-group. Then G is a P-group if and only if G is

isomorphic to one of the following pairwise non-isomorphic groups:
(I) d(G) = 2. In this case, G is a Q-group.

(I-1) G is a group of maximal class of order p4, that is, G is one of the

groups (ii)-(iv) listed in [12, Theorem 3.2(2)];
(I-2) G is one of the groups listed in [12, Theorems 3.5 and 3.9];
(II) d(G) = 3. In this case, G is an S-group and G is one of the groups

(5–7) listed in [12, Theorem 3.6].

Proof. A2-groups are classified in [12] and they are listed in [12, Theorems 3.1,
3.2, 3.5, 3.6, 3.9]. Next, we check the groups one by one.

The groups in [12, Theorem 3.1] are metacyclic. They are not the required
groups by Lemma 2.6.

If G is one of the groups listed in [12, Theorem 3.2], then |G| = p4. By
Lemma 2.8, we get the groups (I-1).

If G is one of groups listed in [12], Theorems 3.5 and 3.9], then Z(G) ≤ Φ(G)
and |G : Z(G)| = p3 by a simple checking. Thus we get the groups (I-2) by
Lemma 2.8.

Assume that G is one of the groups (1–7) listed in [12, Theorem 3.6]. We
have Z(G) � Φ(G) for the groups (1–3). Hence they are not Q-groups by
Lemma 2.8. Since p is odd, the group (4) is not a Q-group. On the other hand,
by computation we have Z(G) = Φ(G) and |G : Z(G)| = p3 for the groups
(5–7), we get the groups (II) by Lemma 2.8. �

3. Main results

In this section, we give the classification of P-groups. We know that P = Q∪
S and Q∩S = ∅. It is enough to classify Q-groups and S-groups, respectively.

Theorem 3.1. Let G be a finite non-abelian p-group. Then G is a Q-group

if and only if G is isomorphic to one of the following pairwise non-isomorphic

groups:
(I) G is one of non-metacyclic A2-groups of order ≥ p5 with d(G) = 2, that

is, G is one of the groups listed in [12, Theorems 3.5 and 3.9].
(II) G is one of groups of maximal class with an abelian maximal subgroup;
(III) G is one of the groups listed in [10, Theorem 3.13].
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Proof. Let G be a Q-group. Due to the classification of finite p-groups whose
non-abelian proper subgroups are generated by two elements in [10], what we
need to do is to check those groups to be Q-groups in the groups (1–7) listed
in [10, Main Theorem].

Assume that G is one of the groups (1), i.e., G is an A2-groups. Since G is
a Q-group, d(G) = 2. By Lemma 2.9, we get the groups (I) and the groups of
maximal class of order p4 which are contained in (II).

Assume that G is one of the groups (2), i.e., G is metacyclic. It follows by
Lemma 2.6 that G is not a Q-group.

Assume that G is one of the groups (3), i.e., G is of maximal class with an
abelian maximal subgroup. Then we get the groups (II) by Lemma 2.7.

Assume that G is one of the groups (4), i.e., G is a 3-group of maximal
class. Let G1 be the fundamental subgroup of G. Then G1 is abelian or
minimal non-abelian by [1, §9, Excise 10]. If G1 is minimal non-abelian, then
|G1 : Z(G1)| = 9. Since G is a Q-group, Z(G) = Z(G1). Now we have
|G : Z(G)| = 27. It follows that |G| = 34. Hence G has an abelian maximal
subgroup. However, all maximal subgroups except G1 are of maximal class by
[1, Theorem 9.6(e)], a contradiction. Thus G1 is abelian. We get G is one of
the groups (II).

Assume that G is one of the groups (5), i.e., G is a D′
p(2)-group. It follows

by [10, Lemma 3.1(4)] that G is a Q-group. We get the groups (III).
Assume that G is one of the groups (6) and (7). Clearly, there exists a

subgroup H of G such that Z(H) 6= Z(G). Hence, G is not a Q-group. �

Theorem 3.2. Let G be a finite non-abelian p-group. Then G is an S-group
if and only if G is isomorphic to one of the following pairwise non-isomorphic

groups:

(1) G = 〈a, b, c
∣
∣ ap

n

= bp
2

= cp
2

= 1, [a, b] = cp, [c, a] = b−νp, [c, b] = 1〉,
where ν is a fixed quadratic non-residue modulo p and n ≥ 1;

(2) G = 〈a, b, c
∣
∣ ap

n

= bp
2

= cp
2

= 1, [a, b] = cp, [c, a] = bupcp, [c, b] = 1〉,

where 4u = 1− ρ2r+1 with 1 ≤ r ≤ 1
2 (p− 1) and ρ the smallest positive integer

which is a primitive root modulo p and n ≥ 1;

(3) G = 〈a1, a2, b
∣
∣ ap

2

1 = ap
q+1

i = ap
q

j = bp
n

= 1, ap1 = ap
q

r+1, [a1, b] = bp
n−1

,

[ak, b] = ak+1, [ap, b] =
p∏

t=2
a
−( p

t−1 )
t , [au, av] = 1〉, where 2 ≤ c = (p− 1)q + r,

1 ≤ r ≤ p− 1, 2 ≤ i ≤ r + 1, r + 2 ≤ j ≤ p, 2 ≤ k ≤ p− 1, 1 ≤ u, v ≤ p, n ≥ 2
and |G| = pn+c+1.

In brief, each S-group is an extension of an abelian p-group by a cyclic group.

Proof. First, we prove that the groups listed in the theorem are S-groups.
Suppose that G is (1) or (2). Then G is an A2-group by [12, Theorem 3.6]. It
follows by Lemma 2.9(II) that G is an S-group.

Suppose that G is one of the groups (3). Then

Z(G) = 〈ap1, b
p〉 and G′ = 〈ap1, a

p
2, a3, . . . , ap, b

pn−1

〉.
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Moreover, M = 〈a1, a2, . . . , ap, bp〉 is the unique abelian maximal subgroup of
G.

Let H be a non-abelian subgroup of G. We prove Z(H) = Z(G).
First, Z(H) ≤ H ∩ M since H ∩ M is an abelian maximal subgroup of

H . Notice that G = MH and M is abelian. Thus Z(H) ≤ Z(G). On the
other hand, since every non-abelian subgroupH contains a minimal non-abelian
subgroup K, it is enough to prove Z(G) ≤ Z(K).

Clearly, there exists an element k ∈ K \M . Since G = M〈b〉, we can assume
that k = bm and K = 〈k,m′〉, where m,m′ ∈ M . Since

kp ∈ CM (k) = CM (bm) = CM (b) = 〈ap1, b
p〉,

kp = (bm)p = aip1 bjp for some i and j. By Lemma 2.1, we have

kp = (bm)p = bpmp[b,m−1](
p

2)[2b,m−1](
p

3) · · · [(p− 1)b,m−1](
p

p).

Hence, j ≡ 1(mod p) and kp = aip1 b(1+vp)p. Moreover, bp
2

∈ K.
It is clear that

[b,m′] = [k,m′] ∈ CG′(k) = CG′(b) = 〈ap1, b
pn−1

〉.

Hence, we can assume that [b,m′] = ai
′p
1 bj

′pn−1

, where p ∤ i′ or p ∤ j′. Since

[a1, b] = bp
n−1

and [ap
q

r , b] = ap
q

r+1 = ap1,

[b,m′aj
′

1 a
i′pq

r ] = 1 and m′aj
′

1 a
i′pq

r ∈ CM (b) = 〈ap1, b
p〉. Thus

m′ = a
−j′1+sp

1 a−i′pq

r bpl

for some integers s, t and l.

If p ∤ j′, then m′p = a−pj′

1 bp
2l. Since bp

2

∈ K, ap1 ∈ K. If p | j′, then p ∤ i′

and [k,m′] = ai
′p
1 . Hence ap1 ∈ K.

It follows by kp = aip1 bp(1+vp) that bp ∈ K. Therefore, Z(G) = 〈ap1, b
p〉 ≤ K,

and hence Z(G) ≤ Z(K). Thus G is an S-group.
Now we prove S-groups are exactly the groups listed in the theorem.
Let G be an S-group. Then G has one non-abelian subgroupH with d(H) >

2. Assume H is the subgroup of G with the smallest order such that d(H) > 2.
Let |G : H | = ps. We prove the result by induction on s.

If s = 0, then H = G. It follows that all non-abelian proper subgroups H
of G are generated by two elements. Hence, d(G) = d(H) = 3. By [10, Main
Results], G is an A2-group with an abelian maximal subgroup. It follows by
Lemma 2.9 that G is one of the groups (5–7) listed in [12, Theorem 3.6], that
is, one of the groups (1–2) and (3) with c = 2. In other words, the theorem is
true for s = 0. Now, let M be a maximal subgroup of G such that H ≤ M .
Then |M : H | = ps−1. By induction hypothesis, M is an S-group. Thus M is
isomorphic to one of the groups listed in the theorem. Let x ∈ G\M . Then
G is a cyclic extension of M by 〈x〉. We will prove G is exactly the group (3)
with c > 2.
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Case 1. M is isomorphic to the group (1) in the theorem. That is, M ∼=

〈a, b, c
∣
∣ ap

n

= bp
2

= cp
2

= 1, [a, b] = cp, [c, a] = b−νp, [c, b] = 1〉, where ν is a
fixed quadratic non-residue modulo p, n ≥ 1.

We will prove there is no S-group G which contains M as its maximal
subgroup in this case. Otherwise, we will deduce a contradiction.

First we have Z(M) = 〈ap, bp, cp〉 and M has exactly one abelian maximal
subgroup A = 〈ap, b, c〉. Hence, A E G and G′ ≤ A since |G/A| = p2. By
hypotheses,

Z(G) = Z(M) = 〈ap, bp, cp〉.

Let x ∈ G\M . Then G = 〈x, a, b, c〉. We will deduce a contradiction by the
following steps.

(1) [b, x] = [c, x] = 1.

Since

[M,A,G] ≤ [M ′, G] ≤ [Z(M), G] = [Z(G), G] = 1 and [G,M,A] ≤ [G′, A] = 1,

[A,G,M ] = 1 by the Three Subgroups Lemma. Hence,

[A,G] ≤ CA(M) = Z(M) = 〈ap, bp, cp〉.

Let [b, x] = apsbptcpu. Since 1 = [bp, x] = [b, x]p = ap
2s, pn−2|s. Hence we

can assume that [b, x] = ap
n−1i2bpj2cpk2 . Since [b, xak2 ] = ap

n−1i2bpj2 , we can
assume by replacing x with xak2 that

[b, x] = ap
n−1i2bpj2 .

If [b, x] 6= 1, then p ∤ i2 or p ∤ j2. It follows from Lemma 2.3 that 〈b, x〉 is
minimal non-abelian. By Lemma 2.4,

xp ∈ Z(〈b, x〉) = Z(G) = 〈ap, bp, cp〉.

Let xp = apibpjcpk. Since

[b, xc−k] = [b, x] = ap
n−1i2bpj2 6= 1,

〈b, xc−k〉 is minimal non-abelian by Lemma 2.3. Since (xc−k)p = xpc−pk =
apibpj , we have, by Lemma 2.4,

Z(〈b, xc−k〉) = 〈bp, (xc−k)p, [b, xc−k]〉 = 〈bp, apibpj , ap
n−1i2bpj2〉.

Since cp ∈ Z(G) and cp 6∈ Z(〈b, xc−k〉),

Z(〈b, xc−k〉) 6= Z(G).

This is a contradiction. Hence, [b, x] = 1. By Lemma 2.5, we also have [c, x] =
1.

(2) [a, x] = ap
n−1i1 .

Let [a, x] = apmbsct. By Lemma 2.1, [ap, x] =
p∏

i=1

[ia, x](
p

i ). Moreover, since

[a, x, a] = [apmbsct, a] = b−tvpc−sp and G4 = 1,
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we have

[ap, x] =

p
∏

i=1

[ia, x](
p

i ) = [a, x]p = ap
2mbpscpt.

On the other hand, [ap, x] = 1 since ap ∈ Z(G). Thus

ap
2mbpscpt = 1.

It follows that pn−2|m, p|s and p|t. Hence, we can assume that

[a, x] = ap
n−1i1bpj1cpk1 .

Since

[a, xb−k1c−j1v
−1

] = ap
n−1i1 , [b, xb−k1c−j1v

−1

] = [b, x] and

[c, xb−k1c−j1v
−1

] = [c, x],

we can assume by replacing x with xb−k1c−j1v
−1

that

[a, x] = ap
n−1i1 .

(3) a final contradiction
Since x 6∈ Z(G), [a, x] 6= 1. Thus 〈a, x〉 is minimal non-abelian. Moreover,

by Lemma 2.6 we have

Z(〈a, x〉) = 〈ap, xp, [a, x]〉 = 〈ap, xp〉.

On the other hand, Z(G) = 〈ap, bp, cp〉. Thus

Z(〈a, x〉) 6= Z(G).

This is a contradiction.

Case 2. M is isomorphic to the group (2) in the theorem. That is, M =

〈a, b, c
∣
∣ ap

n

= bp
2

= cp
2

= 1, [a, b] = cp, [c, a] = bupcp, [c, b] = 1〉, where

4u = 1− ρ2r+1 with 1 ≤ r ≤ 1
2 (p− 1) and ρ the smallest positive integer which

is a primitive root modular p, n ≥ 1.
Using the same argument as that of Case 1, we also prove that there is no

S-group which contains M as its maximal subgroup in this case. The details
are omitted.

Case 3. M is isomorphic to the group (3) in the theorem. That is,

M = 〈a1, a2, b
∣
∣ ap

2

1 = ap
q+1

i = ap
q

j = bp
n

= 1, ap1 = ap
q

r+1, [a1, b] = bp
n−1

,

[ak, b] = ak+1, [ap, b] =
p∏

t=2
a
−( p

t−1 )
t , [au, av] = 1〉, where 2 ≤ c = (p − 1)q + r,

1 ≤ r ≤ p− 1, 2 ≤ i ≤ r+1, r+2 ≤ j ≤ p, 2 ≤ k ≤ p− 1, 1 ≤ u, v ≤ p, n ≥ 2.
It is clear that Z(M) = 〈ap1, b

p〉 and M has exactly one abelian maximal
subgroup A = 〈bp, a1, a2, . . . , ap〉. Hence, AEG and G′ ≤ A since |G/A| = p2.
Take x ∈ G\M . Then G = 〈x, a, b, c〉. We prove there exists an S-group G
such that M is a maximal subgroup of G by the following steps.

(1) [x, ai] = 1 for 1 ≤ i ≤ p, i.e., x ∈ CG(A).
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Since

[Mc−1,M,G] ≤ [Z(M), G] = 1 and [M,G,Mc−1] ≤ [A,A] = 1,

[G,Mc−1,M ] = 1 by the Three Subgroup Lemma. Hence [x,Mc−1] ≤ Z(M) =

Z(G). Since Mc−1 = 〈ap
q

r , ap
q

r+1〉, [x, a
pq

r ] = apic1 bpjc . Notice that ap
q+1

r = 1.
Thus

1 = [x, ap
q+1

r ] = [x, ap
q

r ]p = bp
2jc .

It follows that

pn−2 | jc and [x, ap
q

r ] = apic1 bp
n−1j′c .

Since [ap
q

r , b] = ap1, we can assume that [x, ap
q

r ] = bj
′

cp
n−1

by replacing x with
xbic . We will prove [x, ap

q

r ] = 1.
Otherwise, 〈x, ap

q

r 〉 is minimal non-abelian. Hence

Z(〈x, ap
q

r 〉) = 〈xp, [x, ap
q

r ]〉 = 〈xp, bj
′

cp
n−1

〉 = Z(G) = 〈ap1, b
p〉.

It follows that n = 2 and xp = aip1 bjp, where p ∤ i.
Let H = 〈ap

q

r , a−i
1 x〉. Then [a−i

1 x, ap
q

r ] = bj
′

cp and H is minimal non-abelian.

By Lemma 2.4, we get Z(H) = 〈(a−i
1 x)p, [a−i

1 x, ap
q

r ]〉. Moreover, we have

Z(H) = 〈bp〉 6= Z(G)

since (a−i
1 x)p = bjp and [a−i

1 x, ap
q

r ] = bj
′

cp. This is a contradiction. Hence,

[x, ap
q

r ] = 1. It follows by Lemma 2.5 that

[x, a1] = [x, a2] = · · · = [x, ap] = 1.

(2) [x, b] = a2.
Let

[x, b] = ai11 ai22 · · · aipp bpj .

Since [ak, b] = ak+1 for k = 2, . . . , p − 1, we can assume by replacing x with

xa−i3
2 · · · a

−ip
p−1 that

[x, b] = ai11 ai22 bpj.

Hence, [x, 2b] = bi1p
n−1

ai23 , [x, 3b] = ai24 , . . . , [x, (p − 1)b] = ai2p , [x, pb] =
p∏

t=2
a
−( p

t−1)i2
t .

Since bp ∈ Z(G), we have by Lemma 2.1

1 = [x, bp] = [x, b](
p

1)[x, 2b](
p

2) · · · [x, pb](
p

p)

= api11 api22 bp
2ja

i2(p2)
3 · · ·a

i2(p2)
p

p
∏

t=2

a
−( p

t−1)i2
t

= api11 bp
2j .

It follows that p|i1 and pn−2|j. Thus

[x, b] = api11 ai22 bp
n−1j .
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Moreover, by Lemma 2.2 we can do a suitable replacement such that

[x, b] = ai22 .

If p | i2, then [x, b] = a
pi′2
2 . By Lemma 2.2, there exists a ∈ A such that

[a, b] = ap2. Hence, [xa−i′2 , b] = 1 and xa−i′2 ∈ Z(G) = Z(M) ≤ M . It follows

that x ∈ M , a contradiction. Thus, p ∤ i2. Replacing x by xi
−1

2 , we can assume
that [x, b] = a2.

(3) xp =
p∏

t=2
a
−(pt)
t .

Since

[ap, b] =

p
∏

t=2

a
−( p

t−1)
t = a

−(p1)
2 a

−(p2)
3 · · · a

−( p

p−1)
p

= a−p
2 [a2, b]

−(p2) · · · [ap−1, b]
−( p

p−1)

= a−p
2 [a

−(p2)
2 · · · a

−( p

p−1)
p−1 , b],

we have

ap2 = [a
−(p2)
2 · · · a

−( p

p−1)
p−1 a

−(pp)
p , b].

On the other hand, ap2 = [x, b]p = [xp, b] by (2). It follows that

[xpa
(p2)
2 · · · a

( p

p−1)
p−1 a

(pp)
p , b] = 1

and

xpa
(p2)
2 · · ·a

( p

p−1)
p−1 a

(pp)
p ∈ Z(G) = 〈ap1, b

p〉.

Hence, we can assume that

xp = aip1 bjpa
−(p2)
2 · · ·a

−( p

p−1)
p−1 a

−(pp)
p .

If p ∤ j, then (xj−1

b−1)p = apj
−1i

1 by Lemma 2.1. Let H = 〈ap
q

r , xj−1

b−1〉.
Then H ′ = 〈ap1〉. By Lemmas 2.3 and 2.6, we have H is minimal non-abelian
and Z(H) = 〈ap〉 6= Z(G), a contradiction. Hence p | j. Thus

xp = aip1 bp
2j′a

−(p2)
2 · · · a

−( p

p−1)
p−1 a

−(pp)
p .

Replacing x by xa−i
1 b−pj′ , we have

xp = a
−(p2)
2 · · · a

−( p

p−1)
p−1 a

−(pp)
p .

Let

a′1 = a1, a
′
2 = x, a′3 = a2b

−ipn−1

, a′4 = a3, . . . , a
′
p = ap−1.

Then, by an argument above, now we have

a′p
2

1 = bp
n

= 1, [a′1, b]= bp
n−1

, [a′2, b]= a′3, . . . , [a
′
p−1, b]= a′p, [a

′
p, b]=

p
∏

t=2

a
−( p

t−1)
t .
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Moreover, by the hypothesis of M and the relations between ai and a′i we get
the following:

If r ≤ p− 2, then

a′p
q+1

2 = a′p
q+1

3 = · · · = a′p
q+1

r+2 = a′p
q

r+3 = · · · = a′p
q

p = 1, ap1 = a′p
q

r+2.

Thus
G = 〈a′1, a

′
2, x

∣
∣ a′p

2

1 = a′p
q+1

2 = a′p
q+1

3 = · · · = a′p
q+1

r+2 = a′p
q

r+3 = · · · = a′p
q

p =

bp
n

= 1, ap1 = a′p
q

r+2, [a
′
1, b] = bp

n−1

, [a′2, b] = a′3, . . . , [a
′
p−1, b] = a′p, [a

′
p, b] =

p∏

t=2
a
( p

t−1)
t , [a′u, a

′
v] = 1〉, where 1 ≤ u, v ≤ p, which is a group (3) in the theorem

with q′ = q and r′ = r + 1.
If r = p− 1, then

a′p
q+2

2 = a′p
q+1

3 = · · · = a′p
q+1

p = 1, ap1 = a′p
q+1

2 .

Hence
G = 〈a′1, a

′
2, x

∣
∣ a′p

2

1 = a′p
q+2

2 = a′p
q+1

3 = · · · = a′p
q+1

p = bp
n

= 1, ap1 = a′p
q+1

2 ,

[a′1, b] = bp
n−1

, [a′2, b] = a′3, . . ., [a
′
p−1, b] = a′p, [a

′
p, b] =

p∏

t=2
a
( p

t−1)
t , [a′u, a

′
v] = 1〉,

where 1 ≤ u, v ≤ p, which is a group (3) in the theorem with q′ = q + 1 and
r′ = 1.

Finally, we prove that the groups listed in the theorem are pairwise non-
isomorphic. It is clear that d(Z(G)) = 3 for the groups (1–2) and d(Z(G)) = 2
for the groups (3). Thus, the groups (1) and (2) are not isomorphic to the
groups (3). By [12, Theorem 3.6], the groups (1) are not isomorphic to the
groups (2). �

Remark. From Theorem 3.2, we observe that an S-group is generated by three
elements and has a unique abelian maximal subgroup.
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